
A Case Study of a Corporate Open Source Development
Model

Vijay K. Gurbani
Bell Laboratories

Lucent Technologies, Inc.
Naperville, IL 60566 USA

+1 630 224 0216

vkg@lucent.com

Anita Garvert
Bell Laboratories

Lucent Technologies, Inc.
Naperville, IL 60566 USA

+1 630 713 1567

agarvert@lucent.com

James D. Herbsleb
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 8933

jdh@cs.cmu.edu

ABSTRACT
Open source practices and tools have proven to be highly effective
for overcoming the many problems of geographically distributed
software development. We know relatively little, however, about
the range of settings in which they work. In particular, can
corporations use the open source development model effectively
for software projects inside the corporate domain? Or are these
tools and practices incompatible with development environments,
management practices, and market-driven schedule and feature
decisions typical of a commercial software house? We present a
case study of open source software development methodology
adopted by a significant commercial software project in the
telecommunications domain. We extract a number of lessons
learned from the experience, and identify open research questions.

Categories and Subject Descriptors
K.6.3 [Computing Milieux]: Software Management – Software
development, Software maintenance, Software process.

General Terms
Management, Documentation, Design, Experimentation, Human
Factors.

Keywords
Open Source, Software Development, Session Initiation Protocol,
Architecture

1. INTRODUCTION
Open source practices and tools have proven potential to
overcome many of the well-known difficulties of geographically-
distributed software development [10], and to allow widely
distributed users of software to add features and functionality they
want with a minimum of conflict and management overhead [12].
Some reports have appeared in the literature describing
experiences with open source tools in an industry setting [7], and

in fact there has been a workshop focused specifically on open
source in an industry context [2].

It is not immediately obvious, however, that open source tools and
practices are a good fit to a corporate setting. To be sure, open
source software is used extensively in the industry, and the recent
acceptance of Linux and the Apache project are excellent
examples of this phenomenon. However, what needs further study
is whether the industry as a whole can benefit from adopting the
methodology of the open source software development. Is the
open source development methodology conducive to the manner
in which corporations develop their software, or are there only
certain industrial projects that are amenable to the open source
development methodology? Dinkelacker et al. [6] discuss
Progressive Open Source as a set of tools and techniques for a
corporation to host multiple open source projects within a
corporation and between third parties. Our work adds to the state
of knowledge by providing detailed analysis combed from
interviews of multiple developers and quantitative analysis of data
pertaining to a corporate open source project where multiple
organizations contributed synergistically to further and use a
common asset. Our lessons learned consist of how to make
corporate open source successful in the face of multiple
organizations using different internal development tools and
techniques.

In this paper, we report on the continuing case study on a project
we have been involved in that uses open source tools and
practices in the development of a commercial telecommunication
software [6]. The project is an Internet telephony server
originally built by one of the authors (vkg), and later administered
as an open source project inside Lucent Technologies in order to
speed development and quickly add functionality desired by
different project groups who wanted to make use of it in their
product lines. We describe the effort’s experiences over a four-
year period and present a number of lessons learned about how to
make such projects succeed.

The rest of this paper is structured as follows: in section 2, we
compile a set of characteristics that while common to all open
source projects, may be exhibited differently under a commercial
environment. Section 3 describes the software project we used in
the case study. In section 4, we describe the initial development
of the software and its use inside the company, the open source
style setup and quantitative results from analysis of archival data.
Section 5 follows by presenting the results of extensive interviews
conducted with the developers and users of the software. Section

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’06, May 20-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

472

6 presents lessons learned from this case study, and Section 7
looks at some open issues and concludes the paper.

2. OPEN SOURCE PROJECT
CHARACTERISTICS
While there is, of course no definitive set of characteristics that all
open source project necessarily share beyond permitting legal and
pragmatic access to source code, there are many practices which
are common across a large sample of open source projects (e.g.,
[8]). Some examples of how these practices seem potentially
incompatible with commercial development are the following:

2.1 Requirements
Commercial projects typically devote considerable effort to
gathering and analyzing requirements, in a process that often
involves several disciplines including marketing, product
management, and software engineering. Open source projects, on
the other hand, rely for the most part on users who are also
developers to build the features they need and to fix bugs. Other
users generally have to rely on mailing lists and change requests
[14] to communicate feature requests to developers, who then may
or may not address them, depending on their interests and the
perceived importance of the requests. In commercial
environments, management, often operating through a change
control board, makes decisions about changes based on business
needs.

2.2 Work Assignments
In firms, developers are generally assigned by management to
projects and development tasks. There is usually an effort to
match tasks with developers’ skills, and often an attempt to match
their interests if possible, but developers’ choices are generally
rather limited. In open source, developers typically choose what
they want to work on. Generally, they begin building something
they themselves need as users of the software. Those who
continue to contribute tend to begin taking on jobs because of
their perceived importance to the overall project [15].

2.3 Software architecture
It has often been argued that open source projects require a more
modular architecture than commercial projects, and there is now
some evidence that this is the case [11]. In fact, the architecture
of the Netscape browser became much more modular after it was
released as open source [11]. More generally, it is widely
recognized that the structure of the organization is a critical
determinant of the structure of the code [4, 9]. It is not clear how
well architectures designed for a commercial environment will
support the sort of collaboration that open source practices must
support.

2.4 Tool compatibility
Most open source projects exist independently, or coexist on
hosting services other projects that have all decided to adopt the
same set of tools. In commercial environments, however, the
situation is generally more complicated. There is often a wider
range of tools used, and it is not clear how to support open source
practices in heterogeneous environments.

2.5 Software processes
Many commercial environments have various levels of defined
processes, often accompanied by stage gate systems where
projects are evaluated at various critical points along the
development path. These process are generally seen as critical to
assuring software quality. Open source, on the other hand,
generally has very little in the way of formal process, and instead
insures quality through the “walled server” [8], placing control
over what goes into releases in the hands of a “benevolent
dictator”, or small group of proven technical experts. These two
approaches may prove to be incompatible.

2.6 Incentive structure
Commercial development is profit-driven, while open source is
driven by a complex set of motives, including the desire to learn
new skills, the desire to create features one needs, philosophical
beliefs about contributing to the general welfare, for enjoyment of
the freedom to build what one wants, and sometimes as a political
statement about commercial business practices. The practices that
make the very different open source and commercial practices
succeed may rest in complicated ways on the developers’ differing
motivations.

3. THE SOFTWARE: A
TELECOMMUNICATIONS SIGNALING
SERVER
The specific software we use in our case study is a
telecommunication-signaling server. The server is a faithful
implementation of the Internet Engineering Task Force (IETF)
Session Initiation Protocol (SIP [13]). SIP is an Internet
telephony signaling protocol that establishes, maintains, and tears
down sessions across the Internet. SIP is a text-based protocol
that operates on the notion of a transaction. A transaction is a
request issued by a client followed by the receipt of one or more
responses (from that viewpoint, SIP is like any reply-response
protocol like HTTP, SMTP, or FTP).

By the early 2000, the telecommunications industry was starting
to coalesce around a cellular telecommunications architecture
called the 3rd Generation Internet Multimedia Subsystem (3G
IMS). IMS imposed additional requirements on SIP beyond what
the IETF standards dictated.

A SIP system has many entities: proxy servers help end points
(called user agents) rendezvous with each other; registrars exist to
register user agents so they can be found easily. Integral to a SIP
entity is the notion of a transaction. Thus, in a typical SIP
software stack, a transaction manager (defined above) that is
scalable and provides the many services that the standard requires
is essential. Residing on top of the transaction manager would be
specific SIP entities called transaction users: proxies, user agent
servers, user agent clients, and registrars, are all transaction users.

The source code was written in the C programming language and
Concurrent Version System (CVS) was used for source code
control and versioning. The code executed on the Solaris and
Linux operating systems. The original version of the software
was written as a server, however, as we will discuss later, the code
was re-factored to create a general purpose SIP library, which
currently hosts the server.

473

What we have described so far suffices as a technical context for
the rest of the paper; however, interested readers can refer to
Rosenberg et al. [13] for more information on the protocol and
detailed workings of it.

4. THE OPEN SOURCE EXPERIENCE
In this section, we will give an overview of how the code and the
development process evolved, in order to clarify the experience
base from which our lessons learned were derived.

The timeline of the project is characterized by three distinct
phases. The first phase – Development Phase – spanned the time
between April 2000 to November 2001. The next phase – Ad-hoc
partnering and user-initiated change requests – followed thereafter
and lasted until April 2004. Between May 2004 and May 2005,
the software entered its last, but most crucial phase, the Open
source development phase. Here, the project benefited
proactively from the varied experience of many people from
different backgrounds and projects working simultaneously on the
software.

4.1 Phase I: Initial Development
The initial work on developing the software was conducted by one
of the co-authors of this paper (vkg) at Lucent Technologies by
closely following the work progressing in the IETF SIP working
group. At this point in time, the development was mainly an
effort lead by the author of the code and an additional developer.
The author was in close touch with the work progressing in the
IETF by contributing to and deriving a benefit from the
discussions about the protocol. Once the code had enough
features in it, it was taken to a number of interoperability events to
ensure its compliance to the protocol as well as other
implementations.

4.2 Phase II: Ad hoc partnering
As the code grew stable and achieved feature parity against the
functionality specified in the protocol, the author started to
distribute the binary to a wider audience inside Lucent
Technologies1. An internal website advertised new binary
releases of the server for others within the company to download
and experiment with. The maturity of the server implementation
coincided with the burgeoning acceptance of SIP as a protocol of
choice in the telecommunications domain (1999-2001).

As internal interest in the server grew, the capabilities of the
server were demonstrated by closely partnering in an
opportunistic way, with select groups. For instance, the author
extended the programmability of the server by providing callbacks
when certain SIP events occurred in the server (arrival of a SIP
request or a response). Using this programmability, the server
was tied to a collaboration- and presence-related framework that
was the focus of research in other groups within Lucent
Technologies [3]. Partnering of this type benefited many research
projects within the company. At this time, such partnering was

1While the server was not made available for download outside

the company, for the sake of interoperability, it was hosted on a
machine accessible to the public. Implementers outside Lucent
Technologies can use the server to benchmark their
implementation even today.

mainly limited to integration with existing frameworks and jointly
staging demonstrations.

4.3 Phase II: User-initiated change requests
As the server matured, it moved beyond a research-only project
and was being productized as part of a standard Lucent
Technologies. offer. Initially, even though select groups within
the company had access to the source code, there weren't any
contributions from them beyond the users reporting their
experience to the author. Most internal users were simply
downloading the compiled version of the server and using it for
their work. Expanding the class of users in this way created a
positive feedback loop in which the original code author
implemented new features these users needed. The author
encouraged other users within the company to use the software
and report feedback and wishes for new features. This
communication was conducted in an ad-hoc fashion, primarily
over email and an updated web page. Requests for new features
were ordered according to the business needs of the group
productizing the server and the research interests of the author
(often time, luckily, these coincided).

As SIP continued to gain industry adherents and as the general
field of Internet telephony became more important, the server was
viewed as a critical resource by many groups. Certainly, having
access to the source code of a standard compliant server was
extremely advantageous, more so since the standards were in a
state of flux as SIP further evolved to touch other aspects of
Internet services such as instant messaging and presence. By
2003, the server's source code was studied extensively by other
groups within Lucent Technologies. Requests started to arrive on
evolving the server to serve as a framework for many SIP-related
groups within the company.

4.4 Phase III: Establishing open source
development project
At about the same time that requests for product-specific changes
began to accelerate, others within the company started to
contribute code and ideas back to the author. The stage was set to
enter the traditional open source development model, albeit within
an industrial setting.

The author of the original code (vkg) assumed the role of a
"benevolent dictator" controlling the code base to ensure that the
contributions coming in and features that other groups were
proposing to build into the code matched the architectural
principles of the software.

The author re-factored major portions of the server code to create
a transaction library that could be used by any project within the
company (since all SIP entities need a transaction manager).
Working in close co-operation with two other projects, APIs and
interfaces between the transaction manager and the transaction
users were defined for information to flow between the manager
and the transaction user. Re-factoring the software in this manner
was very successful and enabled rapid creation of user agents [1]
that executed on top of the transaction manager. Since the user
agents were using the services of a transaction manager that was
already implemented and tested, the programmers of these user
agents could concentrate on the task of implementing the specific
behavior of the user agent itself instead of worrying about the
details of handling SIP transactions and other protocol-related

474

minutiae. The re-factoring has been so successful that the initial
server now runs on top of the transaction manager as well. Other
groups that want specific transaction users can build them over
the transaction manager by simply adhering to the APIs and
interfaces.

Once re-factored, the code base evolved as follows. The initial
release of the SIP transaction library was developed in a CVS
archive (CVS and its derivatives remains the preferred source
code control mechanism in the open source community; the
author of the original code chose it since he was most familiar
with it). As the code moved into Phase III, a CVS branch was
created to allow the additional developers to assist in development
and product evolution. Contributions at this time consisted of
manageable extensions to the base product as well as the APIs and
interfaces built around it. Two projects were taking delivery from
the main CVS trunk and one project took delivery from the CVS
branch.

This structure was effective initially, since the modifications were
relatively independent and the number of developers was limited.
However, in the later stages of Phase III, the nature of the features
being put into the code, the maturity of the product, the number of
contributors, and the experience of the contributors, all lead to the
need for a different model to evolve the code base.

It is very important to point out that in corporate software
development, each project has an affinity for a certain set of tools
(see Section 2.4). The set of contributors now adding features to
the code were accustomed to their organization’s development
environment. Thus, some organizations took a copy of the CVS
archive and replicated it in their local software environment to
closely model what the developers in that organization were
accustomed to. Of course, since none of the organizations used
CVS for source control, the source files were put under the source
code control system that the particular organization was well
versed with. At the same time, the original CVS load line and the
initial CVS branch were still being supported. It was at this time
that the concept of an independent and common source code
repository was born. An open source group was consequently
formally formed to co-ordinate the independent and common
source code repository. This group, which we call the Common
SIP Stack (CSS) group in the rest of this paper, is being lead by
one of the co-authors of this paper (agarvert).

The goal of the CSS group is twofold: one, maintain an
independent and common source code repository such that all
projects within the company take their deliverables from the CSS
group. This is not an easy task. Not only must the CSS group
maintain such a repository, but it must also be the final arbiter of
what feature goes into the code and ensure that any feature added
does not break existing functionality pertinent to a different
project. In addition, the CSS group must also have a vision of
evolving the code and deciding which of the many SIP extensions
should be supported in a timely manner and in such as way as to
not adversely impact the performance of the code. The synergy
that resulted in the complexity lead to the replication of another
well known phenomenon in the open source community: the role
of a "trusted lieutenant." Management identified strategic
personnel in different groups and assigned them to manage key
portions of the code while working closely with the author of the
original code.

The second goal of the CSS is to evangelize the technology and
the implementation by creating awareness of the resource within
the company. To this extent, a SIP Center of Excellence (COE)
has been established that acts as a central web site from which
other projects within the company can get information on the
shared asset and instructions on how to download, compile, and
execute the source code. The COE acts as a one-stop shop for all
SIP needs that any project within the company may need.

4.5 Quantitative results
We now present results from several quantitative analyses of the
archival data from the project. This data is correlated with the
evolution of the project through the three-phased timeline
outlined previously.

4.5.1 The Size of the Development Community
During Phase I, the author was the sole contributor to the code.
Towards the latter end of the development phase, another
developer was provided to aid the author in productizing the
server. Phase II did not witness any marked increase in the size
of the development community. The author was still the sole
developer, with 1-2 developers rotated in and out of the project
depending on other needs and priorities.

The size of the development community increased exponentially
in Phase III. As more projects got involved in the software and
started to contribute substantial portions of the code, the size of
the development community increased to a high of 30 developers
working concurrently. In reality, this number tends to fluctuate
because the developers belong to different organizations with
their own management chain; thus depending on the needs of a
particular organization, developers may be put into or taken out of
the project. However, the main development community consists
of about 20 developers, including the original author of the code.
Each of these 20 developers is responsible for certain subsets of
the system; some of them have added substantial features to the
software core and are thus responsible for the upkeep of those
features, while still others own the core of the software and are
occupied in almost all aspects of the evolution of the software,
including providing guidance on how new features are best added
into the system.

4.5.2 Normalized Lines of Code
We define normalized lines of code as the subset of the source
code tree that is required to compile the software base completely.
Specifically, this count does not include all the support software
that was built in parallel to test the functionality of the server.
Due to the complexity of the software, the test scripts and test
programs themselves were about 60% of the normalized lines of
code.

Table I demonstrates the growth of the normalized lines of code
from the inception of the server to the current state. The last
column indicates one of the three phases of the software
enunciated previously. The column with the "Delta" heading
contains the count of lined added to (+) or subtracted from (-) the
number of normalized lines of code from the previous release.

The largest "Delta" value occurs between April 2000 and Nov 1,
2001, during the formative stage of the software. In the
approximately year and a half that the time period represents, the
software was being actively developed, taken to the

475

interoperability events. By the latter date, it was released as the
first productized version. The delta values after Nov 1, 2001
follow a predictable pattern: they inflate when major features are
added to the software (Jan 6, 2005; Dec 2002, etc.) and in some
cases, they shrink as dead pieces of code are taken out or
optimized away (Aug 2004; Jan 21, 2005).

4.5.3 Software Release Frequency
Figure 1 depicts the software release frequency per year. It is
instructive to note that the release frequency starts to climb rather
steadily once the software reaches Phase III (open source
development phase) during the 2004-2005 time period. At this
time, there are many more developers doing active and parallel
development to the software, thus necessitating in an increased
release cycle. Until Phase III, it is hard to characterize the
frequency of releases per year. This is primarily due to the fact
that until Phase III, the software was in its formative stages, thus
the release schedule was driven by how quickly the original
author (vkg) could add new features and fix bugs working alone.

4.5.4 Number of Software Downloads
Figure 2 plots the number of unique software downloads across
the three phases of the software. In Phases I and II, the original
author (vkg) of the software implemented a licensing mechanism
simply to track the number of internal uses of the software. Each
time a new project or person wanted to use the software, a license
key was provided. In Phase III, as the software became more
open source, a web site for downloads was provided that keeps a
log of the number of downloads.

As can be observed in Figure 2, Phase II was the most download
period of the software. A total of 87 unique licenses were
requested during that phase. Phase III has witnessed about half
the number of downloads (40) when compared to Phase II. This
can be attributed to the fact that the software was used on a more
project-wide basis as opposed to being downloaded and used by
individuals. There are about 20 projects throughout the company
that are using the software.

Figure 1. Software Release Frequency.

Figure 2. Number of Software Downloads.

Table 1: Normalized Lines of Code (LoC).

Date Normalized
LoC

Delta Phase

April 20, 2000 6163 - I

Nov 1, 2001 21,239 +15,076 I

Nov 9, 2001 21,397 +158 I

Nov 29, 2001 24,497 +3,100 I

May 22, 2002 26,335 +1,838 II

Dec 20, 2002 32,089 +5,754 II

Aug 12, 2003 33,907 +1,818 II

Apr 27, 2004 38,666 +4,759 II

Aug 26,2004 35,849 -2,817 III

Sept 16, 2004 36,140 +291 III

Sept 24, 2004 34,669 -1,471 III

Oct 1, 2004 36,347 +1,678 III

Oct 6, 2004 34,669 -1,678 III

Dec 10, 2004 36,398 +1,729 III

Jan 6, 2005 43,401 +7,003 III

Jan 20, 2005 45,709 +2,308 III

Jan 21, 2005 44,216 -1,493 III

Feb 4, 2005 44,416 +200 III

Feb 15, 2005 44,413 -3 III

Mar 9, 2005 47,078 +2,665 III

Mar 21, 2005 47,212 +134 III

Mar 30, 2005 47,358 +146 III

Apr 18, 2005 47,457 +99 III

Apr 28, 2005 47,649 +192 III

May 4, 2005 47,547 -102 III

May 31, 2005 47,853 +306 III

June 13, 2005 48,145 +292 III

476

5. RESULTS FROM INTERVIEWS
In order to understand the internal open source development
experience from all relevant perspectives, we interviewed 14
developers who were contributors or users of the SIP server
software. The interviews were typically one hour long, and were
tape recorded with the interviewees’ permission. They were semi-
structured, meaning that the interviewer had a specific set of
topics to cover, but the questions were not fully scripted. In order
to encourage the interviewees to be as candid as possible, the co-
author not affiliated with the company (jdh) conducted all the
interviews, and the notes and tapes were not shared – the results
were shared only in aggregated form to protect confidentiality.

The interview results were analyzed using typical qualitative
techniques. During the interviews themselves, the interviewer
frequently summarized the interviewee’s comments in order to
check his interpretations and eliminate any misunderstandings. He
then went through all of the detailed interview notes to identify
themes, and compiled all comments related to each theme, to see
if all comments were consistent, and to make sure that all views
relevant to a theme were included. Any remaining uncertainty
was resolved with the help of the insider information of the first
two authors.

We organize the interview results around four themes: the initial
decision to build an open source resource, adjustments made to
the organizational process to accommodate the open source
development, how the contributions were managed, adjustments
needed to coordination open source and product development
activities, publicity and communication, and additional benefits.

5.1 Choosing to build an open source resource
The decision to build an open source resource has basically two
components. First there is the basic build vs. buy decision, and
second, it must be decided whether an open source cross-
business-unit strategy is better or whether the resource should be
built in a traditional way within a product group. If there are
commercial versions available, when does it make sense to simply
purchase one of those versus building your own? As the results of
our interviews indicate, the choice in this case was generally easy,
since the internal system had already been largely developed by
the time product groups began to see the market demand for the
SIP stack. Since the internal version already existed, and was
viewed as a high-quality solution, it was nearly universally
preferred inside the company. Interviewees cited the flexibility of
having your own version that you can modify at will, the
timeliness of changes that you can make yourself without being
concerned with a vendor’s release cycle. One interviewee also
cited the political goodwill accrued by the group that developed
the internal product. In the end, the decision whether to manage
the resource as open source depends on a number of
characteristics that we will discuss in the lessons learned section.

Building a cross-business-unit resource also has implications for
supply chain and sourcing strategies. The departments
responsible for purchasing and for technology evolution need to
be aware of, and to evaluate internal resources just as they do
external, and should participate in decisions about what kinds of
resources to create. Our interviews revealed an initial disconnect
between the resource builders and supply chain managers, since
developing resources in this way was not typical in this (or most
other) companies. Additionally, there are challenges in

comparing internally developed resources with commercially-
available ones, since it is difficult to determine the actual cost of
the internal software, or to measure the benefits, such as
modifiability, that come from owning the code.

5.2 Organizational process adjustments
In order to create an effective relationship between the open
source effort and the various product efforts, several kinds of
adjustments in software process were made. As in many
development organizations, the software process varied
considerably across product groups. The CSS group, operating
relatively independently of these product groups, had to design or
choose a process. Since many developers contributing to the
server were based in a variety of product groups, their
expectations and habits were often misaligned with the newly
formed CSS group.

The process adopted by the CSS group was relatively stringent,
especially in the area of inspections, including mandatory review,
tracking of all comments in reviews, and re-review of modified
code. Particularly for developers from product groups with more
lightweight processes, following this process for changes to the
server code was unattractive, and seemed to them unnecessary.
After all, they were generally just building functionality that they
needed, and did not see working on the server code as all that
different from working on code for their own products.

It proved difficult organizationally to make this process work.
The benevolent dictator did not have sufficient time available to
personally review all code contributions, so a pool of
knowledgeable contributors was established to assist with
reviews. But since members of this pool had their primary
responsibilities in product groups, they were reluctant to set aside
time for the reviews. At least one interviewee thought that
participation in these reviews should be made mandatory.

Build environments were sometimes different across sites, and
caused some problems. According to one interviewee, one site
had problems with particular template libraries that proved fairly
difficult to resolve.

5.3 Managing the contributions
The evolution of the code base was outlined in Section 4.4. To
summarize, the code base evolved from being maintained in a
single CVS main trunk to an additional CVS branch as well as
replicated instances of the CVS branch in at least two different
source code control systems used by other projects.

Each project was adding to the code, as was the benevolent
dictator. The benevolent dictator would periodically provide
drops of his code base to the CSS group. Contributions of the
other groups would then be merged with the drop provided by the
benevolent dictator. Each unit was adding to the code, some in a
major effort while others in incremental minor efforts. What’s
more, this addition was often done in separate repositories. Thus,
a “buy back” process was defined as the movement of code from
one repository to another. Contributors in non-CVS repositories
often attempted to tag changes that needed to be bought back to
make the job of merging easier. Periodically, the benevolent
dictator would inspect these changes and “buy back” those that
were sufficiently general into the main CVS archive. Similarly,
other organizations would take deliveries from the CVS main

477

archive (for content that others had contributed) and integrate the
release into their private repositories.

The “buy back” step, in principle, is a valid step in an open source
model. However, the fact that different repositories and change
management tools were used by the main actors resulted in this
task being more difficult than it should be. The problem is further
exacerbated if the work across the repositories is not synchronized
on a constant basis. If the “buy back” step is delayed, the code
across the repositories starts to diverge, thus making this step a
non-trivial rework of features.

5.4 Coordinating open source and product
group development
Contributions to the server came from many sources, and were
made by many people, as discussed above. One of the most basic
problems that many interviewees experienced was that developers
were unaccustomed to thinking and designing solutions that were
more general than their own product line. They typically did not
make changes to the SIP server in a way that would support all
users, but rather worked in their customary way, unconcerned
about building in dependencies that limited the generality of their
work.

The tendency to work in a limited, product-specific way was also
described in many cases as a response to management pressure to
get the changes in so they could have a release of their product
ready on time. Interviewees mentioned the difficulty of the
conflicting pressures between the product release cycle, where
time-to-market was often critical for success of a product release,
and developing functionality with full generality, which is critical
to the success of a common resource.

The interviewees mentioned several important different types of
changes: 1) those that were very general and should go into all
releases, 2) those that were specific to a platform and should go
into all releases targeted at that platform, and 3) those that were
specific to a given product. It was important to keep these three
types of changes separate, but it was often difficult for developers
to understand which sort of change they were making.
Complicating all of this was the fact that the code was portable
across four operating systems: Solaris, Linux, pSOS (a real-time
operating system) and Windows. Some developers were well
versed with only a subset of the operating systems, thus writing
code that could be guaranteed to be portable across the other
operating systems proved to be quite challenging.

In some cases, for example when they used functions available
only in the code for their product, it was easy to determine that
they should use “#ifdef” or similar instructions to isolate the
change. But for many changes, when developers did not know in
any detail the assumptions that might be embedded in the way
other products used SIP functions or data, it seemed risky to add
the changes directly to the code base. One interviewee
commented that developers “should take the time to understand if
it will [affect other applications], but usually they don't.” For this
reason, very large amounts of code were “#ifdef’ed,” often
unnecessarily. If then, the benevolent dictator “bought back” the
new functions, the “#ifdefs” were no longer valid. Eventually,
several interviewees reported that the number of these compiler
instructions in the code made it very hard to read.

Additional problems were encountered in coordinating the timing
of product-specific and transaction library-specific releases. As
products near release, projects impose a code freeze after which
changes are tightly controlled, and no new functionality is added.
The transaction library, on the other hand, driven by the
benevolent dictator’s schedule, has its own release cycle, with
fixes and new functionality being added without any particular
regard to the product release cycle. The issue arose when the
product developers wanted to include all fixes to the server, but
would have liked to exclude new functionality. This is difficult to
manage. As one developer said, "every project has to be in charge
of its own base; [you] can’t be a slave to someone else’s base."

One additional complication was the product groups often had to
deliver custom versions of products specific to a single customer,
since they required a small change that would not make sense for
other customers. This meant that they also had to maintain
multiple versions of the SIP server, and merge bug fixes as
required across these versions. This situation of maintaining
customer-specific releases was complicated and messy in any
case, and maintaining multiple versions of an unfamiliar
technology such as the SIP server made the situation worse.

5.5 Publicity and communication
Several interviewees mentioned that when they found they needed
a SIP stack for their product, they stumbled on the internal
resource accidentally as they were beginning to research SIP
stacks available on the market. The strategic technology
evolution department also found it difficult at first to get sufficient
information to evaluate the internal SIP stack, although they
quickly moved to correct the situation.

In addition to the basic problem of raising awareness across the
company that the technology exists, there is the problem of
bringing developers up to speed on what it does and how it was
designed. Since the internal open source strategy relies on users
of the technology, often spread widely across the company, to
improve and extend it, they need ways to come up to speed. The
benevolent dictator delivered talks around the company describing
it in as much technical detail as he could given time constraints,
and developers could review the code, some documentation, and
could read the standards to which it conformed. Nevertheless,
several reported that they thought more resources were necessary
to help them understand this particular implementation.

Another significant coordination problem was knowing what kind
of work was going on for the server. There were many cases
where developers in different product groups duplicated each
other’s efforts because they were unaware of each other’s work.
Several developers suggested that either some sort of process be
put in place that required developers to register before beginning
work on the server, or a web site or newsletter be established that
would distribute updates information about the various SIP-
related development efforts.

The SIP COE presented in Section 4.4 mitigates some of the
challenges presented in this section.

5.6 Additional Benefits
In addition to creating, evolving, and maintaining a common
resource for the company, the internal open source SIP project
had other benefits that seem unique to this approach.

478

Compared to alternative ways of creating SIP capabilities, this
approach appeared to aid in disseminating knowledge of SIP
technology through the product groups. Had all SIP development
been carried out by a single group that had full and exclusive
ownership of the server, technical staff from product groups
would not have been able to acquire the level of “hands-on”
experience that the open source approach gave them. If, on the
other hand, there had been a fully decentralized approach where
each product group developed its own server, it would have been
difficult for these groups to learn from each other and the
benevolent dictator, since there versions would differ substantially
and there would be little need to interact.

Another advantage was reported by individuals, who saw this
participation as an opportunity to develop professionally valuable
technical skills. One developer, in particular, began contributing
in his spare time, evenings and weekends, much as “hobbyist”
developers in other open source projects do. In order to acquire
new skills – and because he enjoyed the challenge, he began,
completely on his own, to study the code and contribute.
Eventually, his contributions were recognized, and he was
officially assigned to do substantial SIP development, which was
an assignment he welcomed. This is a potentially important way
for the company to groom highly motivated staff to handle new
technologies.

The "many eyeballs" effect of open source development is well
known (i.e., the code benefits from being scrutinized by a wider
audience with different interests and capabilities [16]). This
effect exhibited itself in this specific project in many interesting
ways:

• By studying the code, the performance experts suggested a
list of changes that would optimize the implementation [5];

• API experts suggested a layer of API that would lead to a
more programmable framework;

• Others who were working on a 3G IMS project suggested
(and contributed) modifications that made the code
compliant to that architecture;

• Others still ported the code to other operating systems such
as Windows and pSOS.

There are three reasons why these groups contributed the changes.
The first is that having a stable, standards-compliant
implementation provided motivated individuals a test-bed to try
out new ideas (for instance, a major contribution to the code was a
technique to optimize the parsing step). Another very important
reason was saving time by making the contribution part of the
base software. Unless this was done the group may have to
manage their contribution separately. This may involve merging
their contribution to the base code each time a new release
arrived. To avoid this, it was better to contribute the change. A
third reason is that certain groups, having used the software,
wanted to contribute something back.

One big advantage of using open source techniques is to allow
other groups to examine the existing code and bring their unique
expertise directly to bear. For instance, while the original author
of the code (vkg) was well versed with the IETF standards, he
found it too time consuming to keep up with the 3G standard as
well. Thus contributions coming in from the 3G team reflected
their expertise, and were a welcome addition to the code.

Finally, there was at least one indication that the open source
approach improved in some ways on earlier efforts in the
company to encourage and support reuse. In particular, for the
SIP stack, one could just get the code and modify it as needed. As
one interviewee pointed out, there was no need to “fight anybody”
to make the changes, or to wait for approval. Nor was there a
need to take “headcount” from other groups to make the changes,
as product groups made the changes that they needed. This
optimistic picture needs to be modified somewhat, as we
discussed above when we talked about merging changes back into
the main branch.

6. LESSONS LEARNED
We enumerate the lessons learned in the context of the open
source project characteristics outlined in Section 2.

6.1 Requirements and Software Processes
Project management in corporate open source is a complex and
challenging phenomenon. The tools and processes for front end
planning are optimized within that project to effectively subdivide
the customer deliverable into components matching the business
structure. Subsequent processes within each organization further
divide the deliverable until it reaches a size for which a feature
development team can assume full responsibility. Precise work
assignments and delivery timelines are established. However, this
framework alone is insufficient for an open source project.

Our experience has shown that the corporate open source model
requires the existing feature commitment and project management
processes to be augmented with a functionally based system. This
system must address the unique needs to prioritize across disjoint
projects, to identify common work, to facilitate the resolution of
architectural or scheduling outages, to track effort spent by the
virtual team, and to ensure that the overall product meets the
needs of all the customers. Functionally based quality assurance
must also be supported.

6.2 Work Assignment and Incentive Structure
It is essential to recognize and accommodate the tension between
cultivating a general, common resource on the one hand, and the
pressure to get specific releases of specific products out on time.
To accomplish the first objective it is critical to have management
support for the "benevolent dictator”. Keeping up with the
changes being made to the code as new features are added and
accepting contributions from the set of interested users is a time
consuming task. The benevolent dictator should be the final
arbiter on what goes into the code while preserving the
architecture.

However, unlike traditional open source, the benevolent dictator
cannot be concerned solely with a personal vision when making
decisions about what features go in and how the software evolves.
In a corporate setting, those features that attract the most paying
customers must percolate to the top of the priority list. The
benevolent dictator can still remain a powerful force for
maintaining the conceptual and architectural integrity of the
software, but business necessities must be respected as well.

Some developers will naturally gravitate towards understanding
sizeable portions of the code and contributing in a similar manner,
often on their own time. Such developers should be recognized
by making them the owner of particular subsystems or complex

479

areas of the code (the “trusted lieutenant” phenomenon). More
specifically, product groups could have designated experts in the
open source project, and undergo more extensive training, perhaps
in the form of multi-day workshops. This could perhaps be
reinforced by providing incentives for project developers to have
their code approved by the benevolent dictator for inclusion in the
open source base code.

On a related note, another lesson learned is that there should be a
larger core code review team. It is very unlikely for a developer
in the CSS group to be cognizant of a feature being put into the
code by another organization. Yet it is the duty of the CSS
developers to ensure that the fidelity of the code is preserved with
the addition of this new feature. Thus, it is necessary that a larger
core review team be established. This team should consist of the
benevolent dictator at the very least and those trusted lieutenants
that are responsible for the subsystem which is impacted the most
on the addition of the new code.

6.3 Software Architecture
Owning the source code and having many eyeballs contributing to
it has made it easier to keep up with the numerous extensions to
SIP. It is beyond the capability of one team to be knowledgeable
in all aspects (for instance, the team that knows about
performance optimization may not know much about security).
Having access to the source code is invaluable since different
individuals contribute in different ways to the cohesive whole.

One of the most important lessons is that independent strains of
the software should be at best discouraged, or at worst, tracked
carefully with an eye towards an eventual merge into a single
branch or trunk. One of the biggest challenges we faced was how
to merge independent changes done across two development lines.
Each line had features and bug fixes that the other one wanted.

Since the standards and the technology were rapidly evolving,
owning the source code allowed the company to respond quickly
to customer needs. The authors of the paper have witnessed many
commercial companies who have purchased SIP stacks from third
party vendors; in such cases, these companies have to depend on
the release schedules of the stack vendors. In developing
solutions in the Internet timeline, this delay can provide extremely
costly. Identifying states of flux such as this should be a valuable
guide to finding opportunities for internal open source projects.

The interviewees strongly suggested that had the server not
already existed by the time they experienced customer demand,
they would have been forced by release schedules to purchase an
existing stack rather than build their own. This supports the
notion that a research or advanced technology group is a good
location for starting this effort, since it requires the ability to
anticipate needed technology before the market demands it, and to
have funding not directly tied to particular product groups.

Once the decision has been made to foster a project as open
source, disseminating information for it as widely as possible is a
good strategy. Developers need to know that that common
resource is important to the company, and is part of the company
strategy. Tied to the information campaign at the grass roots level
is the need to evangelize the open source effort internally at the
corporate level. This allows a larger group of developers,
managers, and project leaders to be aware of such an asset, use it,
and if the need be, contribute to it. With the establishment of the
SIP COE, the CSS group has a one-stop shop for downloading

white papers on the technology to downloading the source code
itself.

6.4 Tool Compatibility
And finally, it is important to move toward a common set of
development tools, particularly version control and change
management systems. Unlike traditional open source, the broader
community of developers is constrained by the tool environments
of their project work. Moving code among different version
control systems in order to build a variety of products is a difficult
problem, and introduces the temptation of maintaining separate
forks for each project. Establishing a common repository from the
onset and ensuring that it is not diluted appears to be a pre-
requisite. However, this step is increasingly difficult in a
corporate environment where each project has its own competing
needs. We have been successful in establishing a common
repository, but the success has been borne out of countless
challenges in keeping different repositories synchronized.

A well thought out code distribution strategy is also important. In
traditional open source, the recipient receives a tar file (or
downloads the source tree) and proceeds from there. However, in
a corporate setting, the distributed code has to fit in the load
building strategy of a particular group. In some cases, the CSS
group has had to accommodate the peculiarities of how a certain
group builds the product.

7. OPEN QUESTIONS AND CONCLUSION
The experience we have gained leads to yet more open questions.
As more projects are using the software, each one wants to
customize it in its own manner. It is a challenge to allow such
customizations while still preserving the core architecture. It
would be extremely valuable to improve our understanding of
how to design architectures to support open source style
development. Clearly, the software architecture plays a major role
in dictating the kinds of coordination that are required in doing
the technical work, but we do not yet understand very much about
how to architect software in ways appropriate for different
development styles and organizational settings.

Another question concerns limitations of the open source
development methodology. Can what we did at Lucent
Technologies be replicated with any random project across all
industries? We succeeded due to the convergence of many
external forces and ideas. The manner of protocol development in
the IETF was a big impetus to our project since we essentially
tracked the earlier drafts; i.e., our implementation matured with
the standard. When we started our work, Internet telephony was
not viewed as the mainstream technology that it has now become.
While we like to think it was clear foresight, we acknowledge as
well the role of luck that we were correctly positioned when the
company was looking for a SIP implementation that was standards
compliant and that it owned. It is not clear, in general, how and
when to initiate a project that can serve as a shared resource. It
seems likely that a portfolio of technology investments would be
required since prediction of future directions is so uncertain.

We also had a significant pool of users who were interested and
capable developers, which seems to be a precondition for a
successful open source project. If SIP servers were simply a well-
understood and stable commodity technology, product groups
could simply use it out of the box.

480

7.1 Success criteria
Based on this case study, we speculate that internal open source
projects will have the best chance to succeed where

• a technology is needed by several product groups (hence
there is reason to pool resources),

• the technology is relatively immature so that requirements
and features are not fully known at the outset (so there is a
need to evolve continuously),

• product groups have different needs and specific expertise in
customizing the software for their needs (so everyone
benefits from the contributions of each group), and

• the initial product has a sound, modular architecture (so that
it is feasible to merge all the diverse changes into a single
development branch).

We expect that future research will shed light on whether these
speculations are correct.

7.2 Conclusion
We conclude by observing that this project has established a
wider SIP community at Lucent Technologies. This has resulted
in a shared technology asset that is highly competitive, is of
higher quality, has decreased product generation costs, and has
engaged the larger research, development and product
management community within the company towards
understanding how to build products that use this very important
signaling technology.

8. ACKNOWLEDGMENTS
The third author was supported by a grant from an IBM Faculty
Award, and National Science Foundation research grant IIS-
0414698.

9. REFERENCES
[1] Arlein, R. and Gurbani, V., An Extensible Framework for

Constructing Session Initiation Protocol (SIP) User Agents.
Bell Labs Technical Journal, 9, 3 (November 2004), p. 87-
100.

[2] Broy, M., et al., Workshop on Open Source in an Industrial
Context, http://osic.in.tum.de/

[3] Colbert, R.O., Compton, D.S., Hackbarth, R.S., Herbsleb,
J.D., Hoadley, L.A., and Wills, G.J., Advanced Services:
Changing How We Communicate, Bell Labs Technical
Journal, 6, 3, (June 2001), pp. 211-228.

[4] Conway, M.E., How Do Committees Invent? Datamation,
14, 4 (1968), p. 28-31.

[5] Cortes, M., Ensor, J.R., and Esteban, J.O., On SIP
Performance. Bell Labs Technical Journal, 9, 3 (November
2004), p. 155-172.

[6] Gurbani, V., Garvert, A., and Herbsleb, J., A Case Study of
Open Source Tools and Practices in a Commercial Setting,
Proceedings of the 5th ACM Workshop on Open Source
Software Engineering (WOSSE), (May 2005), pp. 24-29.

[7] Dinkelacker, J., Garg, P., Miller, R., and Nelson, D.,
Progressive Open Source. In Proceedings of the 2002 ACM
International Conference on Software Engineering (ICSE
'02), pp. 177-184, May 2002.

[8] Halloran, T.J. and Scherlis, W.L. High Quality and Open
Source Practices. in Meeting Challenges and Surviving
Success: 2nd Workshop on Open Source Software
Engineering. 2002. Orlando, FL.

[9] Herbsleb, J.D. and Grinter, R.E., Architectures,
Coordination, and Distance: Conway's Law and Beyond.
IEEE Software, Sept./Oct., (1999), p. 63-70.

[10] Herbsleb, J.D. and Mockus, A., An Empirical Study of Speed
and Communication in Globally-Distributed Software
Development. IEEE Transactions on Software Engineering,
29, 3 (2003), p. 1-14.

[11] MacCormack, A., Rusnak, J., and Baldwin, C., Exploring the
Structure of Complex Software Designs: An Empirical Study
of Open Source and Proprietary Code, in Harvard Business
School Working Paper. 2004: Boston, MA 02163.

[12] Mockus, A., Fielding, R., and Herbsleb, J.D., Two Case
Studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11, 3 (2002), p. 309-346.

[13] Rosenberg, J., et al., SIP: Session Initiation Protocol, IETF
RFC 3261, July 2002, http://www.ietf.org/rfc/rfc3261.txt

[14] Scacchi, W., Understanding the requirements for developing
open source software systems. IEE Proceedings on Software,
149, 1 (February 2002), p. 24-39.

[15] Shah, S. Understanding the Nature of Participation and
Coordination in Open and Gated Source Software
Development Communities. In Annual Meeting of the
Academy of Management. 2004.

[16] Raymond, E., The Cathedral and the Bazaar. O'Reilly
Publishing Company, First Edition, (February 2001).

481

