
Enforcing Context-Sensitive Policies in Collaborative Business Environments 
 

Alberto Sardinha, Jinghai Rao, Norman Sadeh 

School of Computer Science, Carnegie Mellon University 

{alberto,jinghai,sadeh}@cs.cmu.edu 

 

Abstract 
 

As enterprises seek to engage in increasingly rich 

and agile forms of collaboration, they are turning 

towards service-oriented architectures that enable 

them to selectively expose different levels of 

functionality to both existing and prospective 

business partners. This includes enforcing access 

control policies whose elements are tied to changing 

contractual relationships or to information obtained 

from external sources (e.g. ratings, credit worthiness, 

export restrictions, etc.). To ensure maximum 

openness, we argue that such sources of contextual 

information should themselves be represented as web 

services that can be identified and accessed on the 

fly, as required to enforce relevant policies. We 

propose an architecture for enforcing context-

sensitive access control policies in which sources of 

information can be annotated with rich semantic 

profiles. This includes a meta-control architecture for 

dynamically orchestrating policy reasoning together 

with the identification and access of external sources 

of information required to enforce policies.  We show 

that this architecture can be implemented as an 

extension to XACML’s PIP and context handler 

functionality. We proceed to show that our 

architecture  extends to a broader class of corporate 

and regulatory policies. The paper also presents 

computational experiments aimed at evaluating  the 

scalability of our architecture. 

 

1. Introduction 
 

Global competition is forcing companies to move 

towards increasingly versatile organizational 

structures. Business processes and supporting 

applications are expected to be easily reconfigurable 

to accommodate constantly changing business 

practices and relationships. In response, enterprises 

are increasingly turning towards service-oriented 

architectures in which functionality is selectively 

exposed in the form of composable web services - 

both within and across companies. This trend goes 

hand in hand with a need to capture and enforce ever 

richer sets of policies that help mediate interactions 

among these entities. These range from role-based 

access control policies, to workflow management 

policies, all the way to a variety of corporate, legal 

and regulatory policies (e.g. procurement policies, 

Sarbanes Oxley, taxation, ITAR, etc.).  A central 

requirement for flexibility and openness in these 

emerging environments involves moving away from 

policies whose elements are necessarily tied to 

predetermined sources of information. Instead 

policies should be allowed to include elements whose 

evaluation requirements change with the context at 

hand. For instance, checking that an employee is 

authorized to request a vacation may involve 

verifying that he has obtained permission from his 

department head. Enforcing such a policy across 

multiple departments may involve consulting 

different services depending on the particular 

department an employee works in. Similarly checking 

the credit worthiness or rating of prospective business 

partners may involve dynamically identifying a 

service that can provide this information. In this 

paper, we propose a service-oriented architecture for 

enforcing such context-sensitive policies. Within this 

architecture, sources of information available to 

enforce context-sensitive policies are modeled as web 

services that can be annotated with rich semantic 

profiles. We describe a meta-control architecture for 

dynamically orchestrating policy enforcement with 

the identification, selection and access of relevant 

sources of contextual information. We show that, in 

the case of access control policies, this architecture 

can readily be implemented as an extension to 

XACML’s PIP and context handler functionality [17]. 

We also discuss more general implementations of our 

Policy Enforcing Agents (PEAs) and report on 

computational experiments aimed at evaluating the 

scalability of our architecture.   

The remainder of this paper is organized as 

follows. Section 2 provides a brief overview of 

related work. Section 3 introduces the concept of 

Policy Enforcing Agents (PEAs) along with a meta-

control architecture for coordinating the enforcement 

of context-sensitive policies. An Access Control 



example is presented in Section 4. This includes a 

discussion of how our meta-control functionality can 

be implemented as an extension of the XACML 

architecture. Section 5 illustrates how the same model 

extends to more general sets of policies in a scenario 

involving a combination of corporate and regulatory 

policies for a fictitious aerospace contractor. Section 

6 provides additional implementation details and 

presents results suggesting that our architecture scales 

fairly well. Section 7 concludes with some final 

remarks.  

 

2. Related Work 
 

The work presented in this paper builds on 

concepts of decentralized trust management 

developed over the past decade (see [3] as well as 

more recent research such as [2,13,16]) . Most 

recently, a number of researchers have started to 

explore opportunities for leveraging the openness and 

expressive power associated with semantic web 

frameworks in support of decentralized trust 

management (e.g. [1, 5, 6, 11, 14, 15, 26, 27] to name 

just a few). Our own work in this area evolved from 

the initial development of semantic web policy 

reasoning engines [9, 10] to that of more flexible 

Policy Enforcing Agents, including work in the 

context of mobile and pervasive computing 

applications [21]. The main contribution of the work 

discussed here is in the development and initial 

evaluation of a meta-control model for 

opportunistically interleaving policy reasoning and 

dynamic service identification and access to enforce 

context-sensitive policies. This includes a discussion 

of how the framework can be implemented as an 

extension of the XML Access Control Markup 

Language (XACML) standard [16]. Other relevant 

work on decentralized trust management languages 

includes the Security Assertion Markup Language 

(SAML) [18], the Enterprise Privacy Authorization 

Language (EPAL) [7] and the Platform for Privacy 

Preferences (P3P) [20] to name just a few. [12] also 

describes a semantic web policy framework for 

distributed policy management. The framework 

allows policies to be described in terms of deontic 

concepts and speech acts. It has been used to encode 

security policies of web resources, agents and web 

services. Work by Uszok et al. has also resulted in the 

integration of KAoS policy services with semantic 

web services [24]. Our initial work on Policy 

Enforcing Agents has relied on an extension of OWL 

Lite known as ROWL to represent security and 

privacy policies that refer to concepts defined with 

respect to OWL ontologies [9, 10, 23, 24]. While 

ROWL has been a convenient extension of OWL [31] 

to represent and reason about rules, it is by no means 

the only available option. In fact, ROWL shares many 

traits with several other languages. This includes 

RuleML [22], a proposed standard for a rule 

language, based on declarative logic programs. 

Another is SWRL [12], which uses OWL-DL to 

describe a subset of RuleML. The focus of the present 

paper is not on semantic web rule languages but 

rather on a meta-control architecture for enforcing 

context-sensitive policies. This architecture has been 

implemented to support XACML access control 

policies as well as more general ROWL policies. 

Scenarios involving both of these implementations 

are discussed. For the purpose of this paper, the 

reader can simply assume that the expressiveness of 

our own ROWL language is by and large similar to 

that of a language like SWRL, with both languages 

supporting the combination of Horn-like rules with 

one or more OWL knowledge bases.  

 

3. Policy Enforcing Agents 
 

As enterprises aim to (semi-)automatically enforce 

a variety of policies, they need to rely on reasoning 

engines (or “trust engines”) to make or recommend 

policy decisions (e.g. whether or not to authorize 

access to a resource, whether a new design change is 

consistent with relevant export restrictions, etc.). We 

use the term Policy Enforcing Agents (PEA) to refer 

to coordinating entities that encapsulate these 

reasoning engines and help orchestrate local 

reasoning with the collection of external information 

necessary to enforce policies. Rather than assume that 

all such external information can be obtained from 

predetermined sources, we believe that a truly open 

architecture calls for a more flexible service-oriented 

infrastructure within which relevant information 

sources are themselves modeled as web services and 

can be annotated with rich semantic profiles. When 

necessary, PEAs can use these profiles to dynamically 

identify and select among multiple possible sources 

of information.   

PEAs receive decision requests (or simply 

“queries”) to render decisions based on policies, 

which themselves are encapsulated in the form of 

rules (see Figure 1). A meta-controller is responsible 

for tracking the status of each incoming query and 

orchestrating its processing. The latter is done by 

successively activating the policy reasoner itself as 

well as an information collection module, which can 

draw on both local knowledge as well as external 



sources of information – including possible 

interactions with users. All communication with the 

outside is assumed to be encrypted and digitally 

signed. 

 
Figure 1. PEA Architecture.  

Meta-control rules support the implementation of 

different orchestration strategies, from simple 

sequential control flows to more sophisticated 

processes capable of automatically accessing 

directories and concurrently collecting information 

from multiple sources.  Strategies are executed by 

selectively activating different PEA modules (e.g. 

policy reasoning module, local information reasoner, 

service invocation module, etc.). This is further 

detailed later in this and other Sections. 

In our current implementation, the meta-controller 

and information collection modules are rule-based 

engines implemented in JESS [8]. For efficiency 

reasons they are implemented as separate modules 

within the same JESS reasoning engine (i.e. each 

module comes with its own set of rules and control 

can be passed back and forth between the modules).  

In some domains, we have also used JESS to 

implement the policy reasoning module, while in 

others we have wrapped “legacy” policy reasoners 

(e.g. Sun’s XACML Policy Decision Point used for 

the work described in Section 4).  

 

3.1 Meta-controller 
 

A PEA’s Meta-Controller consists of a Meta-

Control submodule, a Housekeeping submodule, and 

a Query Status Information knowledge base. As the 

PEA processes incoming queries, its meta-controller 

monitors progress and determines what to do next. 

Specifically, it continuously cycles through the 

following three basic steps: 

1. The Meta-Control submodule analyzes the latest 

query status information and decides which of 

the PEA’s module(s) to invoke next to perform 

particular tasks (e.g. obtaining information 

required to evaluate a policy or invoking the 

policy reasoner). As it invokes these modules 

the Meta-Control submodule updates relevant 

query status information (e.g. updating the 

status of a query from “not yet processed” to 

“being processed”, identifying query elements 

that still need to be evaluated, etc.).  

2. Modules complete their tasks (whether 

successfully or not) and report back to the 

Meta-Controller – occasionally modules may 

also report on their ongoing progress in 

handling a task. 

3. The Housekeeping submodule updates detailed 

status information based on information 

received from other modules and performs 

additional housekeeping activities (e.g., 

cleaning up status information that has become 

obsolete, caching the results of recent requests 

for possible re-use and to mitigate the effects of 

possible denial of service attacks, etc.) 

 

3.2. The Query Status Model 
 

Query status information helps the PEA monitor 

how far along it is in obtaining the information 

required by each decision request (or “query”) and in 

reaching a decision. It is expressed according to a 

taxonomy of predicates intended to help keep track of 

different activities typically involved in reaching a 

policy decision. This includes the status of individual 

queries as well as the status of query elements they 

give rise to. Examples of query elements include the 

evaluation of particular rules (e.g. “If the requester is 

a preferred supplier, it can have access to our 

component requirements forecast”, or “if the 

employee has not exhausted his annual holiday quota 

and his vacation request has been authorized by his 

department head, the vacation request is authorized). 

Query elements are also used to model the need to 

obtain information required to evaluate individual 

rules (e.g. “is this particular company a preferred 

supplier?”, “is this request for vacation authorized by 

the employee’s department head?” or “which 

department does this employee work for?”). 

Processing query elements may in turn generate new 

query elements, whose statuses also need to be 

tracked. Accordingly, query status information 

includes whether a query (or query element) has been 

or is being processed, what individual query elements 

it has given rise to, whether these elements have been 

processed, etc. All status information is annotated 

with time stamps. Specifically, query status 

information includes: 



 

− Status predicates to describe the status of a query 

or query element 

− A query ID or query element ID to which the 

predicate refers 

− A parent query ID or parent query element ID 

to help keep track of dependencies (e.g. a query 

element may be needed to help evaluate another 

query element). These dependencies, if passed 

between PEA agents, can also help detect 

deadlocks (e.g. two PEA agents each waiting for 

information from the other to enforce access 

control policies) 

− A time stamp that describes when the status 

information was generated or updated. This 

information is critical when it comes to 

determining how much time has elapsed since a 

particular module or external service was invoked. 

It can help the agent look for alternative external 

services or decide when to prompt the user (e.g. to 

decide whether to wait any longer). 

 

A sample of query status predicates is provided in 

Table 1. Clearly, different taxonomies of predicates 

can lead to more or less sophisticated meta-control 

strategies. For the sake of clarity, status predicates in 

Table 1 are organized in five categories: 1) 

communication; 2) query; 3) query elements; 4) 

service discovery and 5) service invocation. 

Additional categories of status predicates can also be 

introduced to deal with the requirements associated 

with different types of policies (e.g. to help 

orchestrate the evaluation of different types of 

policies such as a combination of export control 

policies and supplier selection policies as illustrated 

in Section 5). 

Query status information is updated by asserting 

new facts (in the query status information knowledge 

base), with old statuses being cleaned up. As query 

updates come in, they trigger one or more meta-

control rules, which in turn result in additional query 

status information updates and the invocation of one 

or more modules (e.g. policy reasoning module, local 

information reasoner, etc.).  

 

 

 

Sample Status Predicates Description 

Query-Received A particular policy decision request (“query”) has been received.  

Sending-Response A policy decision is being returned/sent 

Query-Deadlock-

Detected 

An incoming query has been identified as possibly resulting in a deadlock. Depending on the meta-

control rules implemented in the PEA, different courses of action are possible (e.g. returning a failure 

message or prompting the user) 

Response-Sent A response (or policy decision)  has been successfully sent 

 

 

1) 

Response-Failed A response failed to successfully reach its destination (e.g. message bounced back) 

Processing Query Query is being processed 

Query Decomposed Query has been decomposed (into one or more query elements) 

 

 

2) 

 
All-Elements-Available All query elements associated with a given query are available (e.g. all the required information is 

available) 

Element-Needed A query element is needed. Query elements may result from the decomposition of a query or may be 

needed to enforce policies. The query element’s origin helps distinguish between these different cases 

Processing-Element A need for a query element is  being processed 

Element-Available Query element is available 

�

 

3) 

 

 Element-locally-

unavailable 

The value of a query element can not be obtained from the PEA’s local knowledge base 

Element-need-service A query element requires the identification of a source of information (“service”) 

No-service-for-Element No service could be identified to help answer a query element. This predicate can be refined to 

differentiate between different types of services (e.g. local versus external) 

 

 

4) 

Service-identified One or more relevant services have been identified to help answer a query element 

Waiting-for-service-

response 

A query element is waiting for a response to a query sent to a service (e.g. query sent to an HR service 

or to a service operated by a trading partner, etc.) 

Failed-service-invocation A service invocation failed. Again this predicate can be refined to distinguish between different types 

of failure (e.g. service down, access denied, etc.) 

Service-response-time-

out 

The time taken by a service to respond is greater than some threshold value. This eventually results in 

a failed-service-response  

 

 

 

 

 

5) 

service-response-

available 

A response has been returned by the service. This will typically result in the eventual creation of an 

“Element-Available” status update. 

Table 1.Sample of status predicates. Status predicates typically have multiple arguments, which are not 

shown here (e.g. query ID or query-element ID, time-stamp, etc.) 

 3.3 Policy Reasoner 
 



The PEA’s policy reasoning engine is responsible 

for evaluating relevant policies and returning policy 

decisions. In the context of access control policies, this 

module plays a role   equivalent to XACML’s Policy 

Decision Point (PDP) [17], as further detailed in 

Section 4.  

In this paper, for the sake of simplicity, we assume 

that all relevant policies are stored within the policy 

reasoner or in a centralized knowledge base (or 

database) accessible to the policy reasoner. In general, 

policies may come from multiple sources (e.g. 

combination of department policies, corporate policies 

and government regulations). If this is the case, a more 

general policy collection module similar to the PEA’s 

information collection module might be required to 

identify all relevant policies. Some policies could also 

be embedded in other PEAs, which could themselves 

be modeled as external sources of information. For 

example, checking whether an employee has 

departmental approval to request a vacation could be 

performed by querying a departmental service, which 

could evaluate corresponding policies on the fly. This 

latter configuration is covered by the architecture 

presented in this paper. 

 

While some policies can be evaluated just based on 

facts contained in the agent’s local knowledge base, in 

general they require obtaining information from a 

combination of both local and external sources. When 

external sources of information are required, the  

Policy Reasoner models the missing information as 

“Query Elements”. The status of query elements is 

recorded in the Query Information Status knowledge 

base, just as the statuses of original queries.  

 

Scenarios presented in this paper rely on two 

different policy reasoners: 

1. A generic JESS policy reasoner capable of 

enforcing a broad range of policies. Policies are 

expressed as ROWL rules [10,32] that refer to 

concepts specified in domain-specific ontologies 

written in W3C’s OWL language [31]. ROWL has 

been used to specify a number of policies, from 

access control policies, to obfuscation policies, to 

message processing policies, etc. 

2. Sun’s XACML Policy Decision Point 

implementation, which evaluates XACML 

decision requests against XACML access control 

policies. In this configuration, the Sun PDP engine 

is wrapped to interoperate with our PEA 

architecture. This includes translating output from 

the Sun PDP engine into query status information. 

 

3.4 Information Collector 
 

The Information Collector is responsible for 

gathering facts (or “information”) required to evaluate 

a given decision request. It works under the supervision 

of the meta-controller, which orchestrates policy 

reasoning and information collection. Facts required to 

evaluate policy decision requests may be known locally 

or may have to be obtained from other sources of 

information. Accordingly, the Information Collector 

comprises a Local Information Reasoner, a Service 

Discovery submodule, a Service Invocation submodule. 

Note that the users themselves could be modeled as 

services that can be queried for missing information. 

The Local Information Reasoner corresponds to 

domain knowledge (facts and rules) known locally to 

the PEA. The Service Discovery submodule helps the 

PEA identify potential sources of information to 

complement its local knowledge.  

External services can be either pre-identified (using 

service identification rules such as “When checking if 

someone is a company employee, ask the company’s 

HR service”) or found with the help of directories (e.g. 

“find services that provide supplier ratings”),  whether 

internal to a given organization or external to it. 

Clearly, service identification rules mapping 

information needs onto specific services can yield 

significant speedups. At the same time, the ability to 

rely on more general service discovery processes that 

involve querying service directories and identifying 

matches based on rich service annotations can provide 

for significantly greater levels of openness. By 

allowing service discovery rules to include both direct 

service identification rules and more complex 

discovery and comparison rules, PEAs allow policy 

developers to selectively choose between both options.  

 

It is worth noting that, in principle, each service can 

have its own PEA. As requests are sent to services, 

their PEAs may in turn respond with requests for 

additional information to enforce their own control 

policies (e.g. access control policies). In general, if 

policies are not carefully coordinated, this could result 

in deadlocks. If all relevant policies are internal to a 

given organization, it is in principle possible to avoid 

such a situation. In general however, this needs not be 

the case and different services may be operated by 

different organizations, each with its own set of 

policies. Such situations can always be handled using 

time-outs.  

As already indicated, PEAs can possibly treat users 

as sources of additional domain knowledge. It is worth 

noting that users can also serve as potential sources of 



meta-control knowledge (e.g. if a particular query 

element proves too difficult to locate, the user may be 

asked whether to give up). 

 

3.5. The Service Discovery Model 
 

A central element of our framework is the ability of 

PEA agents to dynamically identify sources of 

information needed to process queries. Sources of 

information are modeled as semantic web services and 

may operate subject to their own policies enforced by 

their own PEA agents. Accordingly service invocation 

is itself implemented in the form of queries sent to a 

service’s PEA agent.    

In this paper, we use WOWL (Web services in 

OWL) to annotate services, as this language has the 

merit of being fairly compact [10]. We have also 

implemented variations of our architecture using the 

OWL-S language [19] and could readily adopt other 

equivalent frameworks (e.g. WSMO [28]). A WOWL 

service description includes: 

1. The service’s output.  

2. Its preconditions 

3. Relevant non-functional attributes [25], if any  

4. A description of how to invoke the service, 

including the service’s endpoints and its input 

In our current implementation, we use an XSLT 

transformation to convert WOWL service profiles into 

service discovery rules expressed in Jess. The 

discovery rules are expressed as “if-then” clauses - or 

“Left Hand Side” (LHS) implies “Right Hand Side” 

(RHS). The LHS refers to the types of facts a given 

service can provide (as specified in its output) and 

includes the service’s preconditions and input 

parameters. The RHS creates a matching “service-

identified” status predicate.  In other words, given an 

‘element-need-service” status predicate indicating that 

one is looking for a service that can provide a 

particular type of fact, all matching services whose 

preconditions and input conditions are also satisfied 

will trigger matching service discovery rules. As they 

are triggered, these rules will in turn result in the 

creation of matching “service identified” status 

predicates indicating that any of these services can 

possibly yield the desired information. The meta-

controller can later decide which one(s) of the services 

to actually query – depending on its particular meta-

control rules.   

 

4. Access Control Agents: An Example of 

PEAs 
 

A particularly important class of Policy Enforcing 

Agents (PEAs) is that of Access Control Agents (ACA). 

These agents can be viewed as extensions of OASIS’s 

XACML architecture for enforcing access control 

policies[17]. Specifically, Figure 2 shows the 

architecture of an ACA based on Sun’s XACML Policy 

Decision Point (PDP) engine [30]. Incoming decision 

requests (or “queries”) are directed to the agent’s Meta-

Controller which doubles as XACML Policy Enforcing 

Point (PEP). Queries are converted from their native 

format to XACML, using a language adaptor, which 

essentially subsumes part of the XACML Context 

Handler functionality, with the other part being 

handled by the meta-controller. Missing information is 

dynamically identified through interactions between the 

meta-controller and the Information Collector, the 

latter playing the role of XACML Policy Information 

Point (PIP).  

 
Figure 2. PEA Instantiated as an Access Control 

Agent using Sun’s XACML Policy Decision Point 

engine. 

 

In this regard, an Access Control Agent (ACA), 

namely an access control instantiation of a Policy 

Enforcing Agent (PEA), can be seen as a direct 

extension of the XACML standard, with the addition of 

a meta-controller responsible for orchestrating the 

collection of information required to evaluate policies, 

including the dynamic identification, selection and 

access of external sources of information. 

4.1 An Aerospace Contractor Scenario 
The following further illustrates our implementation 

of one such agent in support of access control 

requirements associated with a fictitious aerospace 

contractor, which we refer to as United GenSat 

Corporation. United GenSat is a California-based 

manufacturer of geostationary satellites. It builds two 

lines of communications satellites: the SAT 666 and 



the SAT 777. These two lines of satellites are designed 

to support mobile communications, and a series of 

global positioning and military communications 

applications.  

 
<Rule RuleId="Pre-approvedSupplierRule" 
                             Effect="Permit"> 
 <Target> 
  <Subjects> 
      <AnySubject/> 
  </Subjects> 
  <Resources> 

   <Resource> 

    <ResourceMatch MatchId="string-equal"> 
 <AttributeValue   
        DataType="&XMLSchema;#string"> 

       ProductionSchedule 

     </AttributeValue> 
     <ResourceAttributeDesignator  
            DataType="&XMLSchema;#string" 
            AttributeId="resource-id"/> 
    </ResourceMatch> 

   </Resource> 

  </Resources> 
  <Actions> 

   <Action> 

    <ActionMatch MatchId="string-equal"> 
     <AttributeValue  
            DataType="&XMLSchema;#string"> 

       query 

     </AttributeValue> 
     <ActionAttributeDesignator  
            DataType="&XMLSchema;#string" 
            AttributeId="action-id"/> 
    </ActionMatch> 

   </Action> 

  </Actions> 
 </Target> 

 <Condition FunctionId="string-equal"> 

  <Apply FunctionId="string-one-and-only"> 
   <SubjectAttributeDesignator  
            DataType="&XMLSchema;#string" 

            AttributeId="SupplierCategory"/> 

  </Apply> 
  <AttributeValue  
            DataType="&XMLSchema;#string"> 

    Pre-approved 

  </AttributeValue> 
 </Condition> 

 <Condition FunctionId="string-equal"> 

  <Apply FunctionId="string-one-and-only"> 
   <SubjectAttributeDesignator  
            DataType="&XMLSchema;#string" 

            AttributeId="AuthorizedEmployee"/> 

  </Apply> 
  <AttributeValue   
            DataType="&XMLSchema;#string"> 

    Yes 

  </AttributeValue> 

 </Condition> 

</Rule> 

Figure 3 Sample XACML policy limiting access to 

Production Schedule information to authorized 

employees at pre-approved subcontractors. 

Due to the sensitive nature of its activities and 

products, United GenSat is particularly concerned 

about maintaining tight control over who accesses what 

information both within its organization as well as in 

the context of interactions with its trading partners. 

These interactions include the selective exchange of 

scheduling information to ensure close coordination 

with key suppliers. Policies to control access to this 

information are expressed in XACML. An example of 

one such policy is provided in Figure 3. The policy 

only permits authorized employees (attribute of 

subject) of pre-approved suppliers (attribute of subject) 

to query (attribute of action) the production schedule of 

products it is contributing to (attribute of resource).  

 

Consider Bob, an employee at SATElectronics 

Corporation, a United GenSat supplier pre-approved to 

access production schedule information of products it 

contributes to. Bob sends a request to United GenSat, 

requesting next month’s production schedule for the 

SAT 777.  His request, which includes the identity of 

his company, is forwarded to the appropriate United 

GenSat Access Control Agent (ACA). To determine 

whether to grant access to the requested information, 

the ACA needs additional information, namely (a) 

whether SATElectronics is pre-approved to obtain this 

information – for the sake of simplicity we will just 

assume that this information is maintained in the 

ACA’s local knowledge base, and (ii) whether Bob is 

an authorized SATElectronics employee when it comes 

to accessing production schedule information. To 

answer this latter question, the ACA needs to identify a 

service at SATElectronics and send it a query. 

.  

Figure 4 depicts the main steps involved in 

processing Bob’s request. Upon receiving the request, 

United GenSat’s ACA generates an information status 

update indicating that a new query has been received. 

This information is expressed as a triple of the form 

(predicate subject object) – namely (query-received 

(sender bob)(ask (schedule “SAT777” ?X))). Next, the 

meta-controller generates a new status update 

indicating that the request has to be cleared based on 

applicable access control policies, namely (clearance-

needed (User bob)(element (schedule “SAT777” ?X))). 

This status update in turn results in the meta-controller 

invoking the policy reasoner, which in turn leads to the 

creation of two query elements – one requiring to check 

whether Bob’s company, SATElectronics, is pre-

approved to access production schedule information 

and the other to check whether Bob is an authorized 

employee. The meta-control rules are assumed to first 

check the ACA’s local knowledge base and find that 

SATElectronics is indeed pre-approved. On the other 

hand, Bob’s authorized employee status cannot be 

determined locally. This results in the creation of an 

element-not-locally-available status predicate, which in 



turn leads to the creation of an “element-need-service” 

status predicate, followed by a service identification 

step. A SATElectronics service is identified and a 

response eventually provided indicating that Bob is an 

authorized employee. As a result, a status predicate is 

created indicating that Bob’s request has now been 

cleared – note that Figure 4 only depicts a subset of the 

steps involved in this scenario, and the production 

schedule is eventually returned to Bob..   

 
Figure 4. Query Status Updates. 

 

A particularly interesting step in this scenario is the 

one through which the ACA identifies a 

SATElectronics service capable of identifying whether 

Bob is an authorized employee. Different processing 

flows are possible here, depending on the particular 

meta-control rules and service discovery rules 

implemented in the ACA. In this particular 

implementation, the meta-controller first checks 

whether missing knowledge is available locally. If that 

fails (as in this case), it turns to the service discovery 

module. The service discovery module includes a 

number of rules aimed at making service identification 

as efficient as possible, as well as extremely general 

“fall-back” rules in case none of the more specialized 

rules produce results. In this example, we rely on a 

service identification rule for checking attributes of 

employees of other companies. The rule, in this simple 

scenario, just tells the ACA to check the company’s 

directory for a service capable of providing the 

necessary query element (i.e. whether Bob is an 

authorized employee). The directory is assumed to 

include a simple service called “AuthEmpService”, 

whose WOWL annotations indicate it can provide the 

missing information - namely  whether the employee 

(whose name is provided as input) is an authorized 

employee of SAT Electronics (see wowl:output in 

Figure 5). 
<wowl:ServiceRule wowl:salience="100"> 

 

<rdfs:label>SATElcEmpService</rdfs:label> 

 <wowl:output> 

  <scm:Company rdf:about="&var;#co"> 

   <scm:hasAuthorizedEmp 

          rdf:resource="&var#emp"/> 

  </scm:Company> 

 </wowl:output> 

 <wowl:precondition> 

  <scm:Schedule rdf:about="&var;#sche"> 

   <scm:hasAccess 

              rdf:resource="&var#emp"/> 

   </scm:Schedule> 

 </wowl:precondition> 

 <wowl:precondition> 

  <scm:Product rdf:about="&var;#product"> 

   <scm:hasSchedule 

          rdf:resource="&var;#sche"/> 

  </scm:Product> 

 </wowl:precondition> 

 <wowl:precondition> 

  <scm:Company rdf:about="&var;#co"> 

   <scm:hasName 

          rdf:resource="SATElectronics"/> 

  </scm:Product> 

 </wowl:precondition> 

 <wowl:call> 

  <wowl:Service wowl:name="AuthService"> 

   <wowl:endpoint>servAg</wowl:endpoint> 

   <wowl:input> 

    <scm:People rdf:about="&var#emp"> 

      <scm:hasName rdf:about="&var#nam"/> 

    </scm:People> 

   </wowl:input> 

  </wowl:Service> 

 </wowl:call> 

</wowl:ServiceRule> 

 Figure 5. WOWL Service profile 

 

  

The service’s precondition further indicates that this 

particular service is specifically to verify whether 



people are authorized to access production schedule 

information. 

Admittedly, this scenario takes some short cuts. A 

more realistic variation would have to do a better job at 

dealing with confidentiality considerations and would 

likely involve multiple levels of indirection, with some 

service discovery performed by United GenSat’s ACA 

and some performed locally by SATElectronics in 

response to a more general query from United GenSat. 

Nevertheless, once a service such as AuthEmpService 

in Figure 5 has been identified, its profile can be used 

to automatically generate an access request intended to 

verify whether Bob is an authorized employee. This 

step is performed by the ACA’s service invocation 

module. It includes automatically generating the 

necessary service query along with additional facts 

required by the service as indicated in its input and 

precondition profile. In this particular case, the query is 

of the form: 

 
(query 

  (sender "United GenSat") 

  (predicate "&scm;#SATElectronics") 

  (subject "&scm;#hasAuthorizedEmp") 

  (object "&scm#Bob")) 

 

Based on the service’s input profile, the following 

fact is sent along with the query:   
 

(triple 

  (predicate "&scm;#hasName") 

  (subject "&scm;# Bob") 

  (object "Bob")) 

 

Clearly, this assumes that both the service provider 

and service requester share a common ontology. If not, 

semantic reasoning rules may be needed to establish a 

mapping between their respective ontologies. 

 

 

5. Beyond Access Control Policies 
 

PEAs are not limited to enforcing access control 

policies. The same meta-control architecture can be 

used to support more flexible processing flows when it 

comes to enforcing a broad range of policies. This is 

illustrated in this section by examining a scenario 

where United GenSat undertakes to develop a new 

satellite model, SAT 888, for a client in the UK. As it 

works on the design of the SAT 888 in collaboration 

with both current and prospective suppliers, the 

company needs to ensure compliance with a variety of 

policies.  This includes compliance with corporate 

supplier selection policies as well as with US export 

control regulations (e.g. the US International Traffic in 

Arms Regulations, ITAR)  

 
Figure 6. Using a PEA to check for compliance with 

supplier selection policies, including supplier 

scoring requirements and government export 

controls. 

United GenSat relies on a specialized PEA to help it 

ensure compliance with these policies. As employees 

working on the SAT 888 refine their design and 

evaluate different options, they submit policy 

conformance requests to the PEA. This includes 

checking for compliance of sourcing decisions with 

both export control regulations and corporate supplier 

selection policies. These policies are expressed in 

ROWL and require accessing a combination of 

corporate and external services to obtain uptodate 

supply ratings and export restrictions. An example of 

such a ROWL rule is shown in Figure 7. It specifies 

that, when a product is to be exported (i.e. its country 

of destination is not equal to “USA”), it is approved for 

export if its country of destination and its Export 

Control Classification Number (ECCN) are not on the 

Bureau of Industry and Security (BIS) Commerce 

Control List. If the combination of the product’s ECCN 

and export country appear in the list (in the form of a 

“CCLStatement”), then an export license has to be 

obtained.  

As before, the PEA’s meta-control module 

orchestrates the evaluation of these policies, looking 

for information in its local knowledge base and, when 

necessary, looking for services that can provide 

missing information. This latter step is performed with 

the help of the PEA’s service discovery module. In this 

simple example, it is assumed that the required services 

are known ahead of time. In other words, the PEA can 

rely on simple service identification rules such as 

“When looking for a CCLStatement, issue a query to 

the BIS Commerce Control List and Chart Service”. 

 



<rowl:Rule> 

 <rdfs:label>Export+Approval+Needed</rdfs:label> 

 <rowl:head> 

  <scm:Product rdf:ID="&var;#prod"> 

   <scm:hasExportApproval> 

    <scm:ExportApprovalResult 

rdf:resource="&scm;#true"/> 

   </scm:hasExportApproval> 

  </scm:Product> 

 </rowl:head> 

 <rowl:body> 

  <scm:Product rdf:ID="&var;#prod"> 

   <scm:hasDestination rdf:resource="&var;#country"/> 

  </scm:Product> 

  <rowl:not> 

   <scm:Country rdf:resource="&var;#country"> 

    <rowl:equal-to rdf:resource="&scm;#USA"> 

   </scm:Country> 

  </rowl:not> 

  <scm:CCLStatement rdf:resource="&var;#ccl"> 

   <scm:hasProduct rdf:resource="&var;#prod"> 

   <scm:hasECCN rdf:resource="&var;#eccn"> 

   <scm:hasCountry rdf:resource="&var;#country"> 

   <scm:hasReason rdf:resource="&var;#reason"> 

   <scm:hasResult rdf:resource="&var;#result"> 

  </scm:CCLStatement> 

  <rowl:or> 

   <scm:Result rdf:resource="&var;#result"> 

    <rowl:equal-to rdf:resource="&scm:#not_in_list"> 

   <scm:Result rdf:resource="&var;#result"> 

    <rowl:equal-to rdf:resource="&scm:#has_licence"> 

  </rowl:or> 

 </rowl:body> 

</rowl:Rule> 

Figure 7. A ROWL export control compliance 

policy 

 

Because the BIS, ITAR and OFAC services used in 

this scenario do not exist at this time (i.e. the current 

websites are not implemented as web services), our 

implementation of this scenario currently relies on 

stubs.  

Going back to the ROWL policy listed in Figure 7, 

if there is a CCL Statement indicating that the 

product’s ECCN and its export country are 

incompatible with export restrictions, the policy will 

result in the creation of an “Element-Needed” status 

predicate with attribute “has_license”. In other words, 

the policy reasoner will let the meta-controller know 

that the only remaining option to satisfy this policy is to 

obtain an export license. This in turn could prompt the 

launch of a process to obtain such a license or it could 

lead the United SatGen employee who submitted the 

validation request to look for a different design. This 

shows how PEAs could also be integrated into 

workflow management functionality.  

6. Evaluation 
Our policy enforcing agents are currently 

implemented in JESS and have been integrated with 

two policy reasoners, a ROWL policy reasoner capable 

of enforcing a wide variety of policies and Sun’s more 

specialized PDP reasoner to enforcce XACML 

policies. XSLT transformations are used to translate 

OWL classes and extensions of OWL (e.g. rules, 

queries and services descriptions) into CLIPS [4]. They 

are also used in the XACML language adaptor 

developed for Sun’s PDP reasoner (see Figure 2). 

We have evaluated the scalability of our 

architecture by running variations of the United GenSat 

Supplier Selection Policy scenario presented in the 

previous section. This involved running scenarios in 

which we increased the number of services available to 

obtain missing information. The experiements were run 

on an IBM laptop with a 1.80GHz Pentium M CPU 

and 1.50GB of RAM. The laptop was running 

Windows XP Professional OS, Java SDK 1.4.1 and 

Jess 6.1. After loading the initial knowledge base, the 

Jess engine contained a total of 3500 facts. A 

breakdown of the CPU times is provided in Table 2.  

 

Number 

 of services 

100 200 500 

Meta-

Controller 

860 861 1020 

Local-KB 240 161 270 

Service 

discovery 

and 

 invocation 

793 1041 1052 

Total 1893 2063 2342 

Table 2 Scalability Evaluation – CPU times in msec. 

As can be seen here, the time required to enforce a 

policy conformance request is in the order of a couple 

of seconds and does not increase significantly with the 

number of available services. 

7. Concluding Remarks 
As enterprises seek to engage in increasingly rich and 

agile forms of collaboration, they are turning towards 

service-oriented architectures that enable them to 

selectively expose different levels of functionality to 

both existing and prospective business partners. This 

includes enforcing access control policies whose 

elements are tied to changing contractual relationships 

or to information obtained from external sources (e.g. 

ratings, credit worthiness, export restrictions, etc.). To 

ensure maximum openness, we have argued that such 

sources of contextual information should themselves be 

represented as web services that can be identified and 

accessed on the fly, as required to enforce relevant 

policies. We have proposed an architecture for 



enforcing context-sensitive access control policies in 

which sources of information can be annotated with 

rich semantic profiles. This includes a meta-control 

architecture for dynamically orchestrating policy 

reasoning together with the identification and access of 

external sources of information required to enforce 

policies.  We have shown that our architecture for 

Policy Enforcing Agents can be implemented as an 

extension to XACML’s PIP and context handler 

functionality. We proceeded to also show that it  

extends to a much broader class of corporate and 

regulatory policies and presented an example where a 

PEA is used to enforce sourcing policies, both 

corporate supplier selection policies and export control 

regulations .Initial experiments suggest that the 

computational requirements of our PEA architecture 

are acceptable and that it should scale relatively well.  

 

A key advantage of our proposed architecture is that it 

does not prescribe a particular set of meta-control 

rules. Instead, it should enable companies or vendors to 

customize these rules based on the complexity of the 

policies they need to enforce and the level of flexibility 

they want to achieve when it comes to orchestrating 

policy reasoning with the dynamic identification and 

access of external sources of information. 

 

Acknowledgements 
 

The work reported herein has been supported in part by 

the National Science Foundation under ITR grant 0205435 

(“Multiattribute Negotiation in Dynamic Supply Chains”), 

including a supplement to collaborate with the EU IST 

TrustCom project, and under Cyber Trust Grant CNS-

0627513 (“User-Controllable Security and Privacy for 

Pervasive Computing”) and in part by ARO under research 

grant DAAD19-02-1-0389 ("Perpetually Available and 

Secure Information Systems"). Early support for this work 

has also been provided by DARPA under contract F30602-

02-2-0035 (“DAML initiative”). 

 

References 
 
[1] R. Ashri, T. Payne, D. Marvin, M. Surridge and S. 

Taylor, “Towards a Semantic Web Security 

Infrastructure”, Proceedings of Semantic Web Services 

Symposium, 2004.  

[2] L. Bauer, M.A. Schneider and E.W. Felten, “A General 

and Flexible Access Control System for the Web”, 

Proceedings of the 11th USENIX Security Symposium, 

August 2002. 

[3] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized 

Trust Management”. Proceedings of IEEE Conference on 

Security and Privacy. Oakland, CA. May 1996. 

[4] CLIPS, http://www.ghg.net/clips/CLIPS.html. 

[5] G. Denker, L. Kagal, T. Finin, M. Paolucci and K. 

Sycara, “Security For DAML Web Services: Annotation 

and Matchmaking”, Proceedings of the Second 

International Semantic Web Conference, 2003. 

[6] L. Ding, P. Kolari , T. Finin , A. Joshi, Y. Peng and Y. 

Yesha, “On Homeland Security and the Semantic Web: A 

Provenance and Trust Aware Inference Framework”, 

Proceedings of the AAAI Spring Symposium on AI 

Technologies for Homeland Security, 2005. 

[7] IBM, EPAL 1.1. 

http://www.zurich.ibm.com/security/enterprise-privacy/epal/.  

[8] E. Friedman-Hill, “Jess in Action: Java Rule-based 

Systems”, Manning Publications Company, June 2003. 

[9] F. Gandon, and N. Sadeh, “A semantic e-wallet to 

reconcile privacy and context awareness”, Proceedings of 

the Second International Semantic Web Conference 

(ISWC03), 2003. 

[10] F. Gandon, and N. Sadeh, “Semantic web technologies 

to reconcile privacy and context awareness”, Web 

Semantics Journal, 1(3), 2004. 

[11] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. 

Sahuguet, S. Varadarajan, and A. Vyas, “Enabling 

context-aware and privacy-conscious user data sharing”,  

Proceedings of 2004 IEEE International Conference on 

Mobile Data Management, January 2004. 

[12] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. 

Grosof and M. Dean, “SWRL: Semantic Web Rule 

Language Combining OWL and RuleML”, Version 0.6. 

[13] T. van der Horst, T. Sundelin, K. E. Seamons, and C. D. 

Knutson, “Mobile Trust Negotiation: Authentication and 

Authorization in Dynamic Mobile Networks”, Eighth IFIP 

Conference on Communications and Multimedia Security, 

Lake Windermere, England, 2004. 

[14] L. Kagal, T. Finin, and A. Joshi, “A policy language for 

a pervasive computing environment”, IEEE 4th 

International Workshop on Policies for Distributed 

Systems and Networks, 2003. 

[15] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. 

Finin and K. Sycara, “Authorization and Privacy for 

Semantic Web Services”, Proceedings of Semantic Web 

Services Symposium, AAAI 2004 Spring Symposium 

Series, Stanford University, California, March 2004. 

[16] L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J. Rouse, 

and P Rutenbar, “Device-Enabled Authorization in the 

Grey System”, Information Security: 8th International 

Conference, ISC 2005, September 2005. 

[17] T. Moses (Editor), “Specification Document of XACML 

2.0 Core: eXtensible Access Control Markup Language 

(XACML)”, OASIS, February 2005. 

[18] OASIS, Security Assertion Markup Language (SAML), 

http://www.oasis-open.org/committees/security/. 

[19] OWL-S: Semantic Markup for Web Services, 

http://www.w3.org/Submission/OWL-S 

[20] A P3P Preference Exchange Language (APPEL1.0), 

http://www.w3.org/TR/P3P-preferences/.  

[21] J. Rao and N.M. Sadeh, “A Semantic Web Framework 

for Interleaving Policy Reasoning and External Service 

Discovery”, Proceedings of International Conference on 

Rules and Rule Markup Languages for the Semantic Web, 

Galway, Ireland, 10-12 November 2005. 



[22] The Rule Markup Initiative, http://www.ruleml.org. 

[23] N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K. 

Takizawa, “Creating an open agent environment for 

context-aware m-commerce”, Agentcities:  Challenges in 

Open Agent Environments, 2003.  

[24] N.M. Sadeh, F. Gandon, and Oh Byung Kwon, 

“Ambient Intelligence: The MyCampus Experience”, 

Chapter in "Ambient Intelligence and Pervasive 

Computing", 2006.  

[25] J. O'Sullivan, D. Edmond, and A.T. Hofstede, “What's 

in a service? Towards accurate de-scription of non-

functional service properties”, Distributedand Parallel 

Databases, 12:117.133, 2002. 

[26] J. Undercoffer, F. Perich, A .Cedilnik, L. Kagal, and A. 

Joshi, “A secure infrastructure for service discovery and 

access in pervasive computing”, ACM Monet: Special 

Issue on Security in Mobile Computing Environments, 

October 2003. 

[27] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. 

Tate, J. Dalton and S. Aitken, “Policy and Contract 

Management for Semantic Web Services”, Proceedings of 

Semantic Web Services Symposium, AAAI 2004 Spring 

Symposium Series, Stanford California.  

[28] Web Service Modeling Ontology (WSMO), 

                                                           http://www.wsmo.org/. 

[29] XML Digital Signature,  

                                   http://www.w3.org/TR/xmldsig-core/. 

[30] Sun’s XACML Implementation:  

                                           http://sunxacml.sourceforge.net/. 

 

[31] W3C: OWL Web Ontology Language Overview, W3C 

Recommendation, Feb. 2004. D. McGuinness & F. van 

Harmelen (Eds.) http://www.w3.org/TR/owl-features/ 

[32] F. Gandon, M. Sheshagiri, and N. Sadeh, “ROWL: Rule 

Language in OWL and Translation Engine for JESS”. 

http://www.cs.cmu.edu/~sadeh/MyCampusMirror/ROWL/

ROWL.html

 


