
Using Distributed Constraint Satisfaction to Build a
Theory of Congruence

James Herbsleb, Anita Sarma
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

<jdh,antz>@cs.cmu.edu

Audris Mockus
Avaya Labs Research

Basking Ridge, NJ 07920
audris@avaya.com

Marcelo Cataldo
Research and Technology Center

Bosch Corporate Research
Pittsburgh, PA 15212, USA

marcelo.cataldo@us.bosch.com

ABSTRACT
Distributed Constraint Satisfaction Problem (DSCP) has been
proposed as a methodology to frame and analyze coordination in
software development. Here, we propose concrete ways to cast
rich social and product dependence graphs of software projects
into the DSCP framework, suggest how the lack of congruence
among these graphs may affect primary software engineering
outcomes, and discuss the DSCP machinery that is most likely to
provide necessary tools to test these hypotheses.

1. INTRODUCTION
Coordination is a critical factor for the success or failure of a
software project. Studies have shown that a lack of appropriate
coordination is responsible for delays in project and cost overruns
[3, 4]. Coordination in software development arise because of a
number of reasons (e.g., interdependencies among artifacts,
shared resources, and non uniform skill set among developers).
Teams have to consider these issues to be able to coordinate
among each other.

We have argued in prior work that coordination in software
engineering is a distributed constraint satisfaction problem
(DCSP) [5] in which engineering decisions form a constraint
network. In this position paper, we argue that DCSP can be used
to form a theoretical basis for congruence that lends clarity to the
idea and generates specific, testable hypotheses.

2. CONSTRAINT SATISFACTION
The need for coordination arises from the core technical activity
of making engineering decisions where the alternative chosen for
any given decision potentially influences how one evaluates the
choices for a number of other decisions. The full extent of these
influences is often quite difficult to determine, hence decision-
making is generally performed with some degree of uncertainty
and with imperfect information.

We claim that the irreducible interdependence among tasks in
software engineering is a distributed constraint satisfaction
problem (DCSP), and consequently coordination in a
development organization is the execution of an “algorithm” that
solves the DCSP. In a DCSP, decisions are embedded in a
network of constraints, and are potentially owned by many
agents. Finding a solution then generally requires coordination
among the agents. Given the boundedly rational nature of such
decision-making, solutions will generally be satisficing rather
than optimal [6]. As with many coordination problems,
coordination in software engineering can be carried out in a great

many ways, involving a variety of design methods, social
processes, communication regimens, communication tools, and so
forth. Yet the problem has an irreducible core – if incompatible
decisions are made and constraints not satisfied, then either the
software will not work properly or expensive rework will be
required.

More specifically, we define DCSP by applying Yokoo’s [7]
formulation to the software engineering domain. A software
project consists of a large set of engineering decisions that must
be taken in order to complete the project. Decisions are
represented as n variables x1, x2, . . . , xn whose values are taken
from finite, discrete domains M1, M2, . . . , Mn. Assigning a value
to a variable represents taking the decision represented by that
variable.

A project has a set of constraints that operate over the variables
that represent the engineering decisions. Given an assignment of
a value for some variable, the constraints serve to limit possible
values that can be assigned to other variables. Formally,
constraints pk(xk1, xk2, . . . , xkn) can be represented as predicates
defined on the Cartesian product Mk1 x Mk2 x . . . x Mkj.
Successfully completing a project is equivalent to finding an
assignment for all variables that satisfies all constraints. In order
to represent which decisions participate in which constraints, we
can construct a matrix C of dimension n decisions by k
constraints, where a non-zero value Cnk means decision n
participates in constraint k.

The product CCT, where CT is the transpose of C, is a square
matrix D of dimension n, where a nonzero value Dab indicates
that decision a participates in at least one constraint with
decision b. We call this matrix the dependency matrix. D can
often be estimated directly from data, e.g., dependencies in code
as measured by call graphs or logical dependencies, or
dependencies in design as represented, e.g., by design structure
matrices. Any of these can potentially be used to estimate the D
matrix.

In development organizations, decisions are made by multiple
agents. Let B be a matrix of dimension n by a, where n is the
number of decisions and a is the number of agents. A nonzero
entry Bna indicates that decision n belongs to agent a. B can be
thought of as representing task assignments – which agents take
which decisions.

Finally, a square interpersonal dependency matrix R of
dimension a, the number of people involved in the project, can
be constructed. A non-zero entry Rab indicates that developer a is

performing work that shares dependencies with the work
performed by b. R can be computed as BDBT, where BT is the
transpose of B. R shows which agents own decisions that need to
be coordinated for the particular task or tasks represented by B.

This section has argued that coordination in software
development is a DCSP, and successful coordination is
equivalent to finding a solution. In the next section, we describe
some coordination networks representing mechanisms that
organizations use for solving coordination DCSPs. R is
particularly important in this theory, since coordination networks
often represent coordination as person by person networks, which
can be compared to R, in order to see if coordination behaviors,
organizational structure, or other mechanisms are a good match
for the coordination problem.

3. COORDINATION NETWORKS
In general, research on organizations claims that coordination can
be achieved in three basic ways: “programming,” communication,
and shared representations. Coordination by “programming”
refers to imposing rules, practices, or agreements than ensure
that subsequent behavior is coordinated in certain respects.
Included in this category would be things like plans, interfaces,
and development processes. Coordination by shared
representations means that agents construct and refer to things
like documents and displays to coordinate work. In software, this
could be things like project status data or test results. While we
think the theory developed in this paper could readily be
extended to these forms of coordination, we focus here on
coordination by communication.

Agents attempt to solve a DCSP by making decisions, which we
represent as assigning values to variables, and communicating
with other agents. Communication behaviors differ in many
ways, including what the agents communicate, when they
communicate, and with whom they communicate. Patterns of
communication emerge over time, and these patterns can lead to
familiarity and enhanced ability to coordinate among frequently-
communicating agents. These varieties of communication can be
represented as social networks with different edge types.

Coordination networks that we have used in prior research [2]
include communication over various channels, team membership,
and geographic location. Each coordination network has people
as nodes, and edges (possibly weighted) represent the type of
coordination activity of interest, such as communication or
communication proxy such as team membership. For
computational purposes, each network can be represented as a
square matrix Q of dimension a, where a is the number of people
involved. This, of course, is the same dimension as interpersonal
dependency matrix R in the previous section.

We have now described a way of representing the interpersonal
dependency network that represents a fundamental property of
the DCSP, and various coordination networks that impact how
and how well organizations will solve the DCSP. In the next
section, we describe the concept of congruence that brings R and
Q together.

4. CONGRUENCE AND
CONSTRAINTS
Congruence implies some form of correspondence of the
interpersonal dependency network R and various coordination
networks Qm. There can obviously be many flavors of
congruence, and such correspondences can be computed in a
variety of ways. The underlying idea is simply that the various
Qm represent features of the development organization that will
profoundly impact its ability to solve various DCSPs. The
important relationships between R and Qm may sometimes be
simple, e.g., isomorphism or homomorphism, or they may be
complex. The nature of the relations presents key research
questions.

The fundamental propositions of this theory are:

P1: Higher levels of congruence predict more effective
project coordination.

P2: As a consequence of P1, higher levels of congruence lead
to better project outcomes.

P3: Decisions, particularly those made early in a project, can
substantially alter the structure of D and R, thereby
changing the nature of the coordination problem.

5. RESEARCH PROGRAM
Progress is needed along several fronts in order to complete the
theory, test it empirically, and exploit the new knowledge to
improve software development practice. Roughly we can divide
the activities into two distinct groups: (1) the discovery phase,
which would generate a variety of concepts and measures related
to common coordination situations and relevant ways to measure
congruence among them and (2) the application phase, which
would use insights from case studies to propose practices and
tools to improve software development.

5.1 Discovery
Connection of coordination networks and DCSP. It seems
intuitively clear that various kinds of coordination networks,
which represent key aspects of how an organization coordinates
its work, will strongly influence the organization’s ability to
solve a DCSP of a particular form. Yet much theoretical and
empirical work needs to be done to achieve a more precise
understanding of this relationship. What is important,
ultimately, is how the coordination networks shape the problem-
solving behavior of the organization, and how effectively this
problem-solving behavior addresses the particular DCSP
representing the coordination problem.

Good measures of interpersonal dependency networks for a
variety of tasks. One approach is to derive these networks from
technical dependencies in code and other development artifacts.
In code, for example, dependencies can be measured in terms of
syntactic dependencies such as function calls or reading or
writing data. It is not clear which of these measures can be used
to produce the best estimates of dependency networks. Design
structure matrices provide an appropriate example of a
representation for decision-constraint networks for designs and
architectures. It might also be possible to augment architecture
design environments such as ArchE [1] to build the decision

constraint network from the properties of an architecture and a
set of rules associated with quality attributes.

Identifying and measuring various kinds of coordination
networks. There are potentially a large number of ways to
coordinate engineering decisions, and finding appropriate
measures for them is a challenge. Many can be computed from
data often found in software archives, such as Bugzilla logs (e.g.,
who has communicated with whom about a bug) and version
control systems (e.g., who has worked with whom in the past).
Other potential coordination networks, such as knowledge
networks and trust networks, that may impact coordination, may
need to be measured by surveys or other means. Given the
number and diversity of coordination networks, it may often be
desirable to combine them, e.g., by means of matrix operations,
to generate more precise or more general measures of
coordination. Alternatively, selecting a subset of networks most
salient to the phenomena under study may help solve more
specific problems.

Computing congruence and its effects. As mentioned in the
previous section, there are many degrees of freedom in the
computation of congruence, including selection of decision-
constraint network, selection of coordination network, and
selection of how to compare them. Even more challenging is the
development of theoretical refinements and performing empirical
research to understand the various effects of different levels of
congruence for development tasks. [2] provides an example of
empirical analysis of Modification Request archives and
communication archives to compute congruence measurements.

5.2 Applications
Collaborative and awareness tools based on congruence.
Achieving an understanding of what kinds of coordination
networks are important for resolving a particular type of
decision-constraint network observed in actual projects will
provide a basis for collaboration and awareness tools.

Application of formal methods. While we have no specific
approach in mind, the formulation of coordination presented here
allows graph-theoretic analysis of many aspects of coordination,
which we hope will allow useful application of formal methods
of evaluation. The novelty of application would be the potential
of making the social component of software development
amenable to formal methods.

Analysis of existing development methods. Many existing
software engineering techniques are implicitly or explicitly
designed to support solving a DSCP. For example, the daily
standup meetings advocated in some flavors of agile methods are
explicitly designed, at least in part, to facilitate coordination
through frequent communication. Our theoretical framework
may help highlight the exact role of each technique and to
propose novel approaches that are not yet used.

Structure based on coordination needs. Given a better
understanding of how architectural and design decisions impact
coordination, work on congruence could provide a different way
of thinking about task partitioning. Rather than basing modules
and components purely on technical considerations, better
choices could potentially be made by also taking account of the
impact of design decisions on coordination requirements.

6. EXTENSIONS
In order to be more complete, and to predict and describe a wider
range of coordination issues, the theory will need several
extensions, including at least the following:

Time. Software development is dynamic, and as decisions are
made over time, the nature of the coordination problem changes.
If m decisions have been taken, then the DCSP consists only of n-
m decisions and the constraints among them. The network is not
only smaller, but it may also have very different network
properties, depending on the location of the executed decisions in
the original network. Removing the executed decisions may
create a disconnected graph of more isolated components, for
example. The coordination networks most appropriate for
solving this reduced problem may be quite different from the
networks that best matched the original DCSP. All of this
assumes, of course, that decisions once made are never changed,
which is an oversimplification. Backtracking happens often, but
is expensive, so decisions once made tend not to get changed
unless no solution can be found.

Path dependency analysis. Another potentially interesting area is
path dependency analysis. The dependency matrix D described
earlier represents the space of technical decisions and their
relationships. As technical decisions are made, specific sub-parts
of the decision space and their relationships could become
critical or irrelevant. Then the model proposed here would
provide the machinery to evaluate how specific sets of decisions
impact subsequent ones and how that particular sequence of
events relates to the coordination activity required by the
organization.

What agents know. The agents’ knowledge of decisions that have
been made, the constraint predicates, and the ownership of
decisions are highly likely to influence the effectiveness of
various coordination networks to resolve DCSPs. For example, if
an agent knows who owns a decision, and knows about a
constraint affecting both that decision and one of his own
decisions, then the agent knows who to communicate with to
negotiate how to address the constraint, or to find out if a
decision has already been made by the other agent. On the other
hand, if the agent is not aware of the constraint, he may not know
of any reason to communicate with that agent, suggesting that
some other method such as unplanned communication or
automated dependency detection may be required.
Understanding what knowledge is needed in order to function
effectively in the context of various coordination networks, and
what kinds of communication and artifacts can provide that
knowledge, are important research areas.

Artifacts. A more complete theory of coordination would include
artifacts that agents use to coordinate. For example, agents may
coordinate by examining changes in the code, design documents,
or project status reports. Artifacts could perhaps be represented
in bipartite graphs with agents and artifacts as nodes. Or they
could be represented in additional matrices, e.g., agents by
artifacts, or decisions by artifacts. In either case, this is an area
rich in possibilities, since coordination by shared representations
is one of the primary modes of coordination in general.

Prescribed behavior. Another area that should be explored in
order to create a more complete theory is what we’re calling
prescribed behavior, and organizational theorists would call
coordination by “programming.” (For our field, we are using
new terminology in order to avoid the obvious confusions.)
When does it make sense to spend up front effort on a detailed
architecture, defined process, plans, or requirements to
coordinate the work, and when is a more agile approach
superior?

7. DISCUSSION
Coordination is a fundamental issue in software engineering and
in almost all kinds of group work. Many ways to coordinate
work exist, and there are many drivers for the need to coordinate,
they have largely been viewed as individual, isolated problems
and only point solutions to some of these problems were offered.
Our proposed theory provides the framework to integrate these
diverse approaches into a coherent problem from which testable
hypotheses can be derived and future progress facilitated.

8. ACKNOWLEDGMENTS
The authors gratefully acknowledge support by the National
Science Foundation under Grants No. IIS-0414698, IIS-0534656,
and by the Software Industry Center at Carnegie Mellon
University and its sponsors, especially the Alfred P. Sloan
Foundation. Our thanks to attendees of the IFIP WG 2.9 for
helpful feedback on an earlier version of this paper.

9. REFERENCES
[1] Bachmann, F., Bass, L., and Klein, M., Preliminary Design
of ArchE: A Software Architecture Design Assistant, CMU/SEI-
2003-TR-021, Carnegie Mellon University, 2003,

[2] Cataldo, M., et al., Identification of coordination
requirements: implications for the Design of collaboration and
awareness tools, in Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work. 2006,
ACM Press: Banff, Alberta, Canada.

[3] Herbsleb, J.D. and Grinter, R.E. Splitting the Organization
and Integrating the Code: Conway’s Law Revisited. in 21st
International Conference on Software Engineering (ICSE 99).
1999. Los Angeles, CA: ACM Press.

[4] Herbsleb, J.D. and Mockus, A., An Empirical Study of Speed
and Communication in Globally-Distributed Software
Development. IEEE Transactions on Software Engineering, 29, 3
(2003), p. 1-14.

[5] Herbsleb, J.D., Mockus, A., and Roberts, J.A. Collaboration
in Software Engineering Projects: A Theory of Coordination. in
International Conference on Information Systems. 2006.
Milwaukee, WI.

[6] Simon, H.A., The sciences of the artificial. Second ed. 1981,
Cambridge, MA: The MIT Press.

[7] Yokoo, M., Distributed Constraint Satisfaction:
Foundations of Cooperation in Multi-agent Systems. 2001, New
York: Springer.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

