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Abstract

Significant work has been done on computational as-
pects of solving games under various solution concepts,
such as Nash equilibrium, subgame perfect Nash equi-
librium, correlated equilibrium, and (iterated) domi-
nance. However, the fundamental concepts of ratio-
nalizability and CURB (Closed Under Rational Behav-
ior) sets have not, to our knowledge, been studied from
a computational perspective. First, for rationalizabil-
ity we describe an LP-based polynomial algorithm that
finds all strategies that are rationalizable against a mix-
ture over a given set of opponent strategies. Then, we
describe a series of increasingly sophisticated polyno-
mial algorithms for finding all minimal CURB sets, one
minimal CURB set, and the smallest minimal CURB
set. Finally, we give theoretical results regarding the
relationships between CURB sets and Nash equilibria,
showing that finding a Nash equilibrium can be expo-
nential only in the size of the smallest CURB set. We
show that this can lead to an arbitrarily large reduction
in the complexity of finding a Nash equilibrium. On the
downside, we also show that the smallest CURB set can
be arbitrarily larger than the supports of the enclosed
Nash equilibrium.

Introduction
For multi-agent systems, game-theoretic solution concepts
help agents choose strategies, help modelers predict sys-
tem states, and help mechanism designers guarantee prop-
erties of the games they create. Significant attention has
been given to algorithms for finding equilibria according
to the solution concepts of subgame perfect Nash equilib-
rium (e.g., minimax search andα-β-pruning), Nash equi-
librium (Lemke & Howson 1964; Porter, Nudelman, &
Shoham 2004; Sandholm, Gilpin, & Conitzer 2005), cor-
related equilibrium (Gilboa & Zemel 1989), and more re-
cently, iterative dominance (Knuth, Papadimitriou, & Tsit-
siklis 1988; Conitzer & Sandholm 2005a) and related con-
cepts (Conitzer & Sandholm 2005b).

Nash equilibrium (under which no agent has incentive
to deviate from its mixed strategy given that the other
agents do not deviate from theirs) remains the most impor-
tant point-valued solution concept. However, it has been
recently shown that finding a Nash equilibrium, even in
two player normal-form games, is PPAD-complete (Chen &
Deng 2005), suggesting that no polynomial-time algorithms
exist for the problem.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

However, there are other fundamental solution concepts
that have certain known advantages over Nash equilibrium,
and—as we will show—solutions according to those con-
cepts can be found in polynomial time even in the worst
case. Specifically, we will study the concept ofrational-
izability and the concept of theminimal Closed Under Ra-
tional Behavior (CURB) set(Basu & Weibull 1991) for two-
person normal-form games. A game can have multiple Nash
equilibria, but each of those is a point, i.e., a strategy profile.
In contrast, in these concepts a solution is asetof strategies
for each player.

The notion of rationalizability was introduced in (Pearce
1984) and (Bernheim 1984). It has by now been used as a
robust solution concept in game theory, and in applications
such as auctions (e.g., (Battigalli & Siniscalchi 2003) (Cho
2005) (Dekel & Wolinsky 2001)). Its main insight is that
rationality restricts players from ever playing strategies that
are not best responses given the beliefs they hold about their
opponents; strategies that are not best responses to any belief
about opposing strategies are notrationalizable. Formally,
a strategy is rationalizable if and only if there exists some
mixture over opponent strategies for which it is a best re-
sponse.

Rationalizability is defined from one agent’s perspective.
CURB sets extend the same idea to multiagent settings. In
short, a CURB set consists of a set of pure strategies for
each agent so that all of the agents rationalizable strategies
are included, given that the other agents only mix over their
rationalizable pure strategies. In other words, a CURB set,
S, is defined as a set of strategies that contains the best re-
sponses to any mixture over itself: ifS is CURB and players
believe that no strategy outside ofS will be played with pos-
itive probability by their opponents, then such strategieswill
indeed not be played by rational players. Formally a CURB
set is defined by the following operators.
• βi(m): a function that returns playeri’s best responses

to the mixed strategym.

• M(S): a function that returns all possible mixtures with
supports inS.

• βi(S): a function that returns playeri’s best responses to
any mixture with supports inS,

βi(S) =
⋃

m∈M(S)

βi(m)

• β(S): the Cartesian product of the setsβi(S) over all
players,i.

β(S) =
∏

i

βi(S)



Under this notation, a set,S, is CURB if β(S) ⊂ S. The
entire game is trivially CURB by this definition. (Basu &
Weibull 1991) distinguish aminimalCURB set as a CURB
set that does not contain any CURB subsets.

The minimal CURB set solution concept has been moti-
vated from several perspectives, including the following:

• As is well known, nonstrict mixed Nash equilibria can
be highly unstable because a player is indifferent between
(some of) his pure strategies. Strict Nash equilibria would
be stable but many games lack such equilibria. Minimal
CURB sets are the “nearest set-valued generalization of
strict Nash equilibria” (it is the smallest set of strategies
that includes all ways of choosing among the indiffer-
ences) and a solution according to this concept is guar-
anteed to exist (Basu & Weibull 1991)1.

• Any CURB set can be viewed as a subspace of strategies
within which any best-response dynamic (even a best-
response dynamic of mixed strategies) will stay within.
CURB sets have thus been examined as a solution con-
cept that describes the strategy subspace where iteratively
adapting agents will eventually settle (e.g., (Hurkens
1995)).

• More recently, Voorneveldet.al. have enumerated prop-
erties of minimal CURB sets that illustrate the advan-
tages of set-based solution concepts over point-valued
concepts such as Nash equilibria (Voorneveld, Kets, &
Norde 2005).

A fast technique for finding CURB sets in extensive form
games by utilizing their additional structure has been pre-
sented (Pruzhansky 2003). However, the literature to date
suggests that finding minimal CURB sets has been pro-
hibitively complex in normal form games (e.g., (Pruzhansky
2003; Voorneveld, Kets, & Norde 2005)). We present, to our
knowledge, the first computational treatment of CURB sets
in normal form games. We show that the complexity of find-
ing CURB sets is polynomial even in the worst case.

The rest of the paper is organized as follows. We present
and analyze a family of algorithms which compute, for a two
player normal form game, in time polynomial in the total
number of pure strategies, the set of all rationalizable strate-
gies, all minimal CURB sets, a single minimal CURB set,
and the smallest minimal CURB set. Finally, we discuss ad-
ditional applications of our results, including the potential
of finding minimal CURB sets to bound the computation in-
volved in finding Nash equilibria.

Finding Rationalizable Strategies
Finding strategies which are rationalizable under specific
beliefs (i.e. against a mixture over a given set of oppo-
nent strategies) is a problem of interest in its own right,
and plays a central role in our computation of CURB sets.

1A similar set-valued concept is the Set-Nash of Lavi and
Nisan (Lavi & Nisan 2005), which has been examined for mecha-
nism design but not from an algorithmic perspective. That concept
differs from CURB sets in that only strategies which are rational-
izable againstpureopponent strategies within the set are included.

In this section, we present a polynomial time procedure,
all rationalizable, which accomplishes this task.

In 2-player games, iterative removal of strategies strictly
dominated by (potentially mixed) strategies finds all ratio-
nalizable strategies. However, it cannot distinguish between
strategies that are only globally rationalizable and strate-
gies rationalizable under specific beliefs. CURB sets are
defined with regard to internally consistent beliefs. There-
fore, iterated dominance does not support algorithms for
CURB sets. The technique presented in this section does
(ourall rationalizable function conditions on given
beliefs).

The algorithm below is for the row player. The column
player’s algorithm is symmetric. The parameters to the pro-
cedure are a set of row player strategies to consider,Sr, a
set of column player strategies they may be played against,
Sc, and the row-player’s utility function,ur. For each row
strategy,sr ∈ Sr, a linear feasibility problem (LFP) (i.e.,
a linear program with no objective) is constructed to find a
mixture, psc

, over column player strategies such thatsr is
the row player’s best response. The constraints of the LFP
ensure that the mixture is valid (sums to1) and that the row
player’s utility by playingsr againstpsc

is greater than or
equal to that of any other strategy inSr. If and only if the
LFP has a feasible solution,sr is added to the set of ratio-
nalizable strategies.

procedureall rationalizable(Sr, Sc, ur)

S∗

r ← ∅
for each row strategy,sr ∈ Sr do

let rationalizable← ⊤ iff there exists a feasible
solution to the following linear feasibility problem:
find psc

such that ∑

sc

psc
= 1 (1)

(∀s′r ∈ Sr/{sr})
∑

sc

psc
ur(sr, sc) ≥∑

sc

psc
ur(s

′

r, sc) (2)

if rationalizable then S∗

r ← S∗

r ∪ sr

return S∗

r

The computational complexity of the procedures de-
scribed in this paper depend on the total number of strategies
in the game, which we will denote byn, and the complexity
of solving a linear feasibility problem where the number of
variables and the number of constraints are bounded byn,
which we will denote asLFP(n). Linear feasibility prob-
lems can be solved in low-order polynomial time even in
the worst case. They are no slower to solve than linear pro-
grams (the fastest known algorithms for LFPs are faster, in
the worst case, than the fastest known linear programming
algorithms (Ye 2006)) because linear program solving in-
volves solving a linear feasibility program as the first phase
to find a feasible solution, after which the linear program
solver needs to still improve that solution to reach an op-
timum. (In the experiments, we solve the LFP using the
simplex algorithm, which has worst-case exponential com-



plexity but is known to outperform polynomial linear pro-
gramming algorithms in practice.)

Prop. 1. all rationalizable returns all rationaliz-
able strategies, and nothing else. It isO(n)× LFP(n)2.

Finding CURB Sets
We now turn our attention to the problem of finding CURB
sets. The procedure below finds a minimal set of strate-
gies that both 1) contains a given seed strategy,sr, and 2) is
CURB. (Note that the returned set is not necessarily a min-
imal CURB set.) It alternates between the players, calling
the all rationalizable procedure to identify strate-
gies that have become rationalizable via the addition of op-
ponent strategies. If an iteration passes without strategies
being added, the algorithm has converged.

procedure min containing CURB(sr, 〈Sr, Sc, u〉)

S∗

r ← {sr}, S∗

c ← ∅
converged← ⊥
while ¬converged do
converged← ⊤
for (p, o) ∈ [(c, r), (r, c)] do

S′

p ← all rationalizable(Sp \ S∗

p , S∗

o , up)
if S′

p 6= ∅ then
converged← ⊥
S∗

p ← S∗

p ∪ S′

p

return sub-game,G′ = 〈S∗

r , S∗

c , u〉

Prop. 2. min containing CURB is O(n2)× LFP(n).

Thm. 1. Themin containing CURB algorithm iscor-
rect, that is, the returned set,S∗, is a minimal set of strate-
gies that both 1) contains the given seed strategy,sr, and 2)
is CURB.

Proof. We show thatS∗ is CURB by considering its state af-
termin containing CURB converges. The convergence
of the algorithm implies that no strategies outside ofS∗ are
rationalizable with respect toS∗. Therefore,β(S∗) ⊂ S∗,
andS∗ is CURB.

To prove thatS∗ is the minimal containing CURB set of
sr (it contains no CURB subsets that includesr), we will
use induction on the strategies added toS∗.

• Base Case:Initially S∗ contains onlysr andβc(sr). At
this point,S∗ is trivially the minimal containing CURB
set ofsr because we cannot removesr and removing the
column player’s best response tosr breaks the CURB
property.

• Inductive Step: Each time a new strategys∗ is added to
S∗ it is necessarily a best response to some mixture,m ∈
M(S∗), over the strategies already contained inS∗. Since
strategies are never removed fromS∗ during the execution
of MCC, m will remain a valid mixture. Therefore, no
new strategys∗ can be removed fromS∗ without breaking
the CURB property.

2We omit some proofs due to limited space.

We will now present three algorithms which use the above
procedure to detect minimal CURB sets in a game. To facil-
itate understanding of these algorithms, we first present the
following results regarding CURB set structure.

Thm. 2. If each of two intersecting strategy sets is CURB,
then their intersection is also CURB.

Proof. Consider two CURB setsSA andSB with the non-
empty intersectionSI . For any mixture over strategies in
SI belonging to (without loss of generality) the row player,
there exists a pure strategy which is column player’s best
response,s∗c . BecauseSA is CURB and also contains the
row mixture,s∗c ∈ SA; likewise s∗c ∈ SB . Therefores∗c is
within their intersection,SI .

Since the intersection of two CURB sets must be CURB
and contained in both sets, we have the following.

Cor. 1. Minimal CURB sets cannot overlap (i.e., share any
rows or columns).

Cor. 2. Each row strategy belongs to at most one minimal
CURB set.

Finding All Minimal CURB Sets. The broadest query
one can make regarding the minimal CURB set structure
of a game is to find all minimal CURB sets. For one,
this is useful in the adaptive agent context, to identify re-
gions of strategy space into which learning agents may set-
tle (e.g., (Hurkens 1995)). Theall MC procedure described
below answers this query.

To determine all of the minimal CURB sets, the
min containing CURB procedure can be executed with
each row strategy, in turn, as a seed. For the first seed, this
call is made with the parameter〈Sr, Sc, u〉 indicating the
entire game. However, the result above regarding CURB in-
tersections shows that each of the CURB sets returned by
min containing CURB must contain the minimal con-
taining CURB sets of each of its members. Therefore, we
can accelerate future calls by maintaining a map between
each strategy and the smallest CURB set in which it has
been discovered so far. We use the subgame restricted to
that strategy set as the parameter〈Sr, Sc, u〉 when that strat-
egy is used as the seed. Whenever such a call results in
a smaller CURB set, we eliminate the previous CURB set
from consideration, as it cannot be minimal. Once each
strategy has been used as a seed,all MC terminates and
returns the CURB sets that have not been eliminated.

From the corollary above, the fact thatall MC executes
min containing CURB on each row strategy, and the
fact that no superset CURB sets remain, we have the fol-
lowing.

Prop. 3. all MC finds all minimal CURB sets, and nothing
else. It isO(n3)× LFP(n).

Finding One Minimal CURB Set. Rather than finding all
minimal CURB sets in a game, it may be desirable to quickly
find any single minimal CURB set. To complete this query,
we can use themin containing CURB procedure with a
random strategy as the seed. Since the discovered CURB set
might not be minimal, we recur within it by choosing as a
seed a contained strategy that has not yet been used as a seed.



We repeat this until all strategies in the current set have been
used as seeds, at which point we terminate and return the
remaining set. This constitutes theone minimal CURB
algorithm.

If the game has more than one CURB set,one MC will
be faster thanall MC because it will never leave the small-
est CURB set within which it ever chooses a seed. The ex-
act speed ofone MC depends on the first seed chosen. If
it happens to be in a small CURB set,one MC runs faster.
In the worst case where the entire game is the only CURB
set,one MC executes all of the same steps asall MC. Due
to this fact, and the fact that the returned set has been con-
firmed to be the minimal containing CURB set for all strate-
gies within it, we have the following.

Prop. 4. one MC returns a minimal CURB set, and is
O(n3)× LFP(n).

Finding the Smallest Minimal CURB Set. As a different
type of query, one may be interested in finding asmallest
minimal CURB set. This is important, for example, if the
CURB set is used for future computations (e.g., for Nash
equilibrium finding as we will discuss later in the paper) and
the complexity of those future computations increases with
the size of the CURB set.

We find the smallest minimal CURB set using a pseudo-
parallelization ofall MC, wherein we expand a candidate
set only when it is one of the smallest currently available.
First, we construct a candidate set for each row strategy con-
taining only that strategy. We insert the sets into a prior-
ity queue where sets containing the fewest strategies receive
highest priority. We repeatedly pop the smallest candidate
set from the queue and add all the rationalizable strategies
to that set usingall rationalizable. If new strate-
gies were added, the resulting set is inserted back into the
queue, and prioritized based on its new size. The algorithm
terminates when a candidate set is removed from the queue
that fails to admit any new rationalizable strategies. Thatset
is returned, and it is a smallest minimal CURB set. We call
this algorithmsmall MC.

The smallest CURB set in any game must be minimal,
and all other candidates in the queue are of size greater or
equal to the returned set. The complexity ofsmall MC
is bounded by the total number of strategies in the small-
est CURB set, which we denote bynSC. Since each call
to all rationalizable must add at least one strategy
until small MC terminates, we have the following.

Prop. 5. small MC returns a minimal CURB set that
is a smallest minimal CURB set in the game, and it is
O(nSC n2)× LFP(n).

Experimental Results
We examined the runtime performance of our algorithms on
two game distributions provided by theGAMUT instance
generators (Nudelmanet al. 2004): random games, andco-
variant games. Figure 1 shows how each minimum CURB
finding algorithm scales with game size on a dataset of over
1000 random, square normal form games with total num-
ber of strategiesn between 20 and 80.small MC is faster
thanall MC. This is consistent with theirO-complexities,

considering that many random games have small CURB
sets. While theO-complexity ofone MC andall MC is
the same, experimentallyone MC is faster because it only
needs to find one minimal CURB set. (On any game with
more than one minimal CURB set,one MC is faster than
all MC.)

 20  30  40  50  60  70  80

Random Game Size (n)

all_MC
one_MC

small_MC

 20  30  40  50  60  70  80

Covariant Game Size (n)

all_MC
one_MC

small_MC

Figure 1: Scalability of our algorithms in game size (the
curves on the right overlap).

We observed that the performance illustrated on random
games in Figure 1 was typical of that of many other in-
stance distributions provided by theGAMUT instance gener-
ators as well. However, to show potentially differing perfor-
mance, we also experimented with the covariant game class,
in which payoffs for both players are drawn from the same
distribution with a specified covariance. In our experiments
we used a covariance parameter of−0.5. That class and
that setting have been shown to be particularly challenging
for Nash equilibrium finding (with the Lemke-Howson algo-
rithm and the Porter-Nudelman-Shoham algorithm) (Porter,
Nudelman, & Shoham 2004). Figure 1 shows that the
all MC algorithm scales similarly on random and covari-
ant games, while the other two algorithms lose their relative
speed advantages when applied to the covariant class.

Most random games have small smallest CURB sets (in
fact, often sets of size 2, i.e., pure-strategy equilibria), and
those that do not, tend to have very large smallest CURB
sets (Figure 2). On the other hand, covariant games tend to
have almost no small smallest CURB sets and often have
large smallest CURB sets. (This is consistent with the ob-
served hardness of these games for support enumeration-
based Nash equilibrium finding algorithms that try to find
equilibria with small supports first (Porter, Nudelman, &
Shoham 2004).) The disparity explains the lowered perfor-
mance on covariant games for both the two minimal CURB
finding algorithms, which are affected by the size of the
smallest minimal CURB set.

To better understand how the minimal CURB finding al-
gorithms scale with the size of the smallest CURB set, we
bucketed then = 20 games from above according to the
size of the smallest CURB set. (Forn = 40 games the
buckets for medium sized small CURB sets were nearly
empty, making it impossible for us to estimate mean run-
times with sufficient accuracy.) Figure 3 plots the aver-
age runtime for each bucket. On games with very small
CURB sets,small MC is fastest, but it is outperformed by
bothone MC andall MC as the smallest CURB set grows.
The surprising average-case efficiency of the latter two algo-
rithms is due to their leveraging of information across calls



 0  5  10  15  20

Small CURB size (n = 20)

Covariant
Random

 0  5  10 15 20 25 30 35 40

Small CURB size (n = 40)

Covariant
Random

Figure 2: Distribution of Smallest CURB set size in random
and covariant (r = −0.5) games, wheren = 20 andn = 40
(3,000 games for each distribution and value ofn).

to min containing CURB with different seeds. Because
small MC performs all the searches in parallel, this infor-
mation is unavailable.

The results shown in Figure 1 are unintuitive because
most random and covariant games have tiny CURB sets,
which are the special case under whichsmall MC outper-
formsone MC. If smallness of CURB sets were known in
advance, one could usesmall MC to accomplish the task
of one MC more efficiently, but generally this is slower. To
get the best of both, one can timeslice between the two al-
gorithms. The runtime of this hybrid is at most twice the
runtime of the faster of the two (plus the length of a slice
and the slicing overhead).

 0  5  10  15  20

Random Smallest Min CURB

all_MC
one_MC

small_MC

 0  5  10  15  20

Covariant Smallest Min CURB

all_MC
one_MC

small_MC

Figure 3: Average runtime on games weren = 20, with
varying smallest CURB set sizes.

CURB Sets and Nash Equilibria
Both minimal CURB sets and Nash equilibria model strat-
egy subspaces which are mutually reinforced given the ratio-
nality of agents and their common knowledge. A CURB set
with only one row and one column strategy isnecessarily
a pure strategy Nash equilibrium. Furthermore, any mini-
mal CURB set contains the supports for at least one Nash
equilibrium in mixed strategies (Basu & Weibull 1991). We
observe that this result suggests a secondary use for find-
ing minimal CURB sets: our algorithms can be used to pre-
process a game so that a Nash equilibrium finding algorithm
needs to only operate on a minimal CURB set rather than
the entire game. This can yield an arbitrarily large reduction
of the search space, as Theorem 3(a) will show.

The most common prior preprocessing technique for Nash
equilibrium finding, iterated removal of dominated strate-
gies, attempts to eliminate strategies that cannot be played

with any probability in any Nash equilibrium (Knuth, Pa-
padimitriou, & Tsitsiklis 1988), (Gilboa, Kalai, & Zemel
1993). The same is true of a recent preprocessing technique,
the generalized eliminability method (Conitzer & Sandholm
2005b). One comparative advantage of minimal CURB set-
based elimination is that it can eliminate strategies that are
played in some equilibria, while guaranteeing that the result-
ing set still contains the supports of at least one equilibrium.

Our CURB set-based preprocessor can reduce search
space size by an arbitrary amount (i.e. to a CURB set of
almost any dimension) even on games where no prior pre-
processing technique can eliminate anything.

Thm. 3. For anyr ≥ 2, c ≥ 2 andr′, c′ such that1 < r′ ≤
r and1 < c′ ≤ c (or r′ = c′ = 1), there exists at least one
r × c normal-form game, where

a) the game has anr′ × c′ smallest CURB set.
b) iterated elimination of dominated strategies (even domi-

nation by mixed strategies) cannot eliminate any strate-
gies,

c) the recent recursive preprocessing technique (thatcan
eliminate strategies that belong to some equilibrium as
long as some other equilibrium remains) (Conitzer &
Sandholm 2006) cannot eliminate any strategies, and

d) if r′ + c′ ≤ r+c
2 (i.e., the smallest CURB set is not huge),

the general eliminability method (Conitzer & Sandholm
2005b) cannot eliminate any strategies. (Even if the
smallest CURB set is huge, the general eliminability tech-
nique cannot eliminate more strategies than our CURB
set-based technique.)

Proof. We first present the following family,Γ, of games.
Let Γr′c′ denote such a game of sizer′ × c′. The fol-
lowing generator produces such a game wherer′, c′ ≥ 2.
Assign the payoffsu(sr1

, sc1
) = u(sr2

, sc2
) = (0, 1) and

u(sr1
, sc2

) = u(sr2
, sc1

) = (1, 0). Then, fori ∈ [2, r′ − 1],
set u(sri+1

, sc1
) = ( r′

−i
r′

, 1) and u(sri+1
, sc2

) = ( i
r′

, 0).

Next, for j ∈ [2, c′ − 1], setu(sr1
, scj+1

) = (0, c′−j
c′

) and
u(sr2

, scj+1
) = (1, j

c′
). For all payoffs still unassigned, set

u(sri
, scj

) = (−i,−j).
For example, the gameΓ3,4 is as follows.

Γ3,4 sc1
sc2

sc3
sc4

sr1
0,1 1,0 0,12 0, 1

4

sr2
1,0 0,1 1,12 1,34

sr3

1
3 , 1 2

3 ,0 -3,-3 -3,-4

Any game generated in this way has a Nash equilibrium
where the row player mixes between his first two strategies
and the column player mixes among all his strategies. It also
has an equilibrium where the column player mixes between
his first two strategies and the row player mixes among all
his. Thus, every strategy inΓr′c′ is part of some equilibrium.
Additionally each column strategy is a best response to a
mixture over the first two row strategies (and, to any column
strategy, one of those two is a best response), and vice versa.
Thus,Γr′c′ has a single minimal CURB set and it includes
the entire game.



We now construct anr× c game with a minimally CURB
r′ × c′ subset by putting the gameΓr′c′ in the top left and
the gameΓ(r−r′)(c−c′) in the bottom right. All other payoffs
are set to negative random noise. The resulting game is irre-
ducible by (iterated) dominance and by general eliminability
because every strategy participates in some Nash equilib-
rium. The game is irreducible by the recursive preproces-
sor because the row player’s payoffs are distinct within each
column and the column player’s payoffs are distinct within
each row. (IfΓr′c′ is thesmallestminimal CURB set and
r′ + c′ > r+c

2 , we instead construct a game by starting with
Γr′c′ and including additional row and column strategies
that are neither dominated nor part of any minimal CURB
set. It is easy to generate such strategies, but they might
not be part of any Nash equilibrium. Thus the general elim-
inability method may be able to eliminate those additional
strategies.)

However, three factors curb the promise of minimal
CURB set algorithms as powerful preprocessors for Nash
equilibrium finding. First, the fastest Nash equilibrium find-
ing algorithms, while requiring exponential time in the worst
case, tend to run faster than (at least the current implemen-
tations of) the CURB set finding algorithms on many in-
stance distributions. Second, by Theorem 3(a), the smallest
CURB set can be arbitrarily large (up to the size of the entire
game, in which case the preprocessor does not eliminate any
strategies from consideration). Third, even after the smallest
minimal CURB set has been identified, the remaining search
space (CURB set size) can be arbitrarily larger than the size
of the supports of a contained Nash equilibrium:

Thm. 4. A Nash equilibrium with supports consisting of two
strategies for each player can be the only Nash equilibrium
in an arbitrarily large minimal CURB set.

Proof. Consider the following family of games that con-
tain large minimal CURB sets and small-support equilibria.
For any integerk > 0, we define the gameΩk as follows.
As in the previous proof, assign the payoffsu(sr1

, sc1
) =

u(sr2
, sc2

) = (0, 1) andu(sr1
, sc2

) = u(sr2
, sc1

) = (1, 0).
Then, fori ∈ [3, 2 + k],

• u(sri
, sc1

) = (−∞, ǫ), u(sr1
, sci

) = (ǫ,−∞),

• u(sri
, sci

) = (0, 0),

• u(sri
, sci−1

) = (1 + ǫ, 0), u(sri−1
, sci

) = (0, 1 + ǫ), and

• for all j > i + 1 andj ≤ 2 + n,
u(sri

, scj
) = (0,−∞), andu(srj

, sci
) = (−∞, 0)

For example, the gameΩ2 is as follows.

Ω2 sc1
sc2

sc3
sc4

sr1
0,1 1,0 ǫ,−∞ ǫ,−∞

sr2
1,0 0,1 0,1+ǫ 0,−∞

sr3
−∞,ǫ 1+ǫ,0 0,0 0,1 + ǫ

sr4
−∞,ǫ −∞, 0 1+ǫ,0 0,0

Prop. 6. Ωk has a single minimal CURB set and it includes
the entire game.

Prop. 7. In Ωk, the only Nash equilibrium is the the strat-
egy profile wheresr1

, sr2
, sc1

andsc2
are each played with

probability 1
2 .

This completes the proof of the theorem.

The above results mean that minimal CURB set algo-
rithms do not always help in Nash equilibrium finding be-
cause the smallest CURB set can be arbitrarily large (Theo-
rem 3(a)) and it can be arbitrarily loose around an enclosed
Nash equilibrium (Theorem 4). However, on any game in-
stance that has a small CURB setor a relatively tight mini-
mal CURB set3, and on which standard equilibrium-finding
algorithms run very slowly, our technique should yield a
drastic speed improvement for Nash equilibrium finding
(the worst-case complexity of our preprocessor is polyno-
mial, while any equilibrium-finding algorithm has super-
polynomial run-time (unless PPAD=P)).

Furthermore, the existence of the polynomial-time al-
gorithm for detecting a game’s smallest CURB set
(small MC) allows us to offer the following theoretical re-
sult of potential general interest.

Thm. 5. The complexity of finding a single Nash equi-
librium for a two-player normal form game is super-
polynomial only in the size of the game’s smallest CURB set.
(If PPAD=P, then it is not super-polynomial in anything.)

Conclusions and Future Research
We presented the first algorithms for rationalizability and
CURB sets, two important set-valued solution concepts for
normal-form games. Our algorithms find all rationaliz-
able strategies for a given support of opponent’s strategies,
all minimal CURB sets (all MC), one minimal CURB set
(one MC), and a smallest minimal CURB set (small MC),
all in polynomial time. The CURB algorithms use tech-
niques such as dovetailing with a priority queue, and ex-
ploiting information across overlapping CURB sets, to fur-
ther improve speed.

Experiments on random games showed thatsmall MC is
the fastest,one MC is second, andall MC is the slowest of
the three. On covariant games, the speed advantage of the
former two disappears. The runtime of the algorithms is af-
fected by the size of the smallest CURB set. On games with
small CURB sets,small MC performed significantly bet-
ter than the others, but the others (especiallyone MC) per-
formed better on games containing only large CURB sets.

We also examined the potential for using our algorithms
as preprocessors for Nash equilibrium finding algorithms.
We proved that our technique can eliminate an arbitrarily
large portion of the game from consideration while guaran-
teeing that the remaining strategies contain a Nash equilib-
rium. This is the case even on games where prior preprocess-
ing techniques are powerless.

On the downside, we showed that the smallest CURB set
can be arbitrarily large and/or arbitrarily loose. Furthermore,

3If the game has a relatively tight CURB set, a Nash equilibrium
can be found quickly by enumerating strategies of the CURB to be
left out from the supports.



on many distributions, current Nash equilibrium finding al-
gorithms run faster on average than the CURB set algo-
rithms.

However, we showed that finding a Nash equilibrium is
super-polynomialonly in the size of the smallest CURB
set of the game. Taken together with our CURB set al-
gorithms that are polynomial even in the worst case, and
the fact that Nash equilibrium finding algorithms are super-
polynomial in the worst case (unless PPAD=P), this indi-
cates that our preprocessing techniques will yield a drastic
speed improvement on hard games that have a smallor a
relatively tight minimal CURB set. As we showed, games
with these two properties do exist; future research involves
determining whether such games occur naturally.

The CURB set definition is for any number of players.
In this paper we considered the two-player case. For a
larger number of players, the obstacle is finding rational-
izable strategies quickly as a subroutine. The mathematical
program we use is of degreed where the number of players
is d+1; for two players it is an LFP but for three players it is
already quadratic. Our CURB set algorithms can be trivially
generalized to any number of players. Even the general-
ized versions only make a polynomial number of calls to the
all rationalizable subroutine. Therefore, if future
research finds polynomial algorithms for finding rationaliz-
able strategies for more than two players in polynomial time,
then our generalized CURB set algorithms are also polyno-
mial time.
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