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Abstract

Numerous measures of the C2 structure have been developed. The goal is to develop a small
meaningful and predictive set. Work in this area, however, has been hampered by a lack of a
standard categorization schema. Such a schema is presented herein. This schema is based on the
recognition that many aspects of C2 structures can be represented as graphs.

1. Introduction and Motivation

Measuring and monitoring the C2 structure requires attendance to numerous aspects of the
structure. Decades of research have been spent in an attempt to develop a small set of
meaningful and predictive measures. The result has been a plethora of measures ranging in
usability, predictability, and meaningfulness. Often, multiple measures have been developed for
the same underlying construct - such as span of control. Currently there does not exist a
commonly accepted taxonomy for classifying C2 architectures or a commonly accepted set of
measures. Within the organizational theory community debate rages over whether or not such a
taxonomy, and the associated measures, is possible, let alone useful. McKelvey [1982] sees a
need for such a taxonomy. Some schemes for classifying organizations have been based on
strategy [Romanelli, 1989] or product service [Fligstein, 1985]. Other researchers have classified
organizations using multiple dimensions, such that one or more measures are used to place an
organization along that dimension. For example, Aldrich and Mueller [1982] categorize
organizations using the dimensions of technology, coordination, and control.

There are three core difficulties with the standard approach. First there is no unifying scheme
for categorizing, contrasting and comparing such measures. Such a unifying scheme would also
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benefit the field by enabling the identification of areas where no measures have been developed.
Second, there is no common underlying representation of C2 data. Such a common representation
scheme would make it possible to formally define what measures are possible, ensure
comparability of measures in lab, field, live-simulation, and computer simulation data gathering
exercises. And third, there is no basis for determining the robustness of these measures and their
extensibility to different size groups. Without such a basis the usability, predictability, and
meaningfulness of measures is difficult to discern mathematically.

2. Meta-Matrix Representation for C2 Structures as Typology

In contrast with these previous efforts, what we wish to suggest is a graph theoretic
approach to this problem. Specifically, we conceptualize organizational structure, i.e., the C2
architecture as a set of interlinked graphs. The result is a typology for measuring and monitoring
the C2 structure based on a network approach to organizational units. We illustrate this
approach using a simple structure (shown below), data from an A2C2 experiment on C?
adaptability, and data from a computer-simulation experiment on C2? adaptability. A graph
theoretic approach to organizational measurement is not in itself new. Numerous organizational
researchers use network measures to address organizational issues.

Indeed, numerous network measures have been developed [Wasserman and Faust, 1994],
some of which were developed particularly to address organizational issues [Krackhardt, 1994;
Lin, 1994]. However, a common failing of these measures is that they assume that the
organizational structure is adequately described in terms of the personnel and the relations among
them. If this were the case, then organizations with identical authority structures should behave
identically; but, this is assuredly not the case. In contrast to this personnel only approach, we
argue that, at a minimum, personnel, resources and tasks, and the connections within and among
each of the sets of components must be considered. Further, we use the term resources broadly
to include both physical artifacts or assets and knowledge.

To illustrate our argument we use the hypothetical structure shown in Figure 1. Here there
are 5 personnel (the circles), 4 resources (2 aircraft and 2 ships), and 8 tasks. These tasks need to
be done to complete the mission. The lines indicate the relations among personnel, resources and
tasks. These relations may be directed or not.

Figure 1. Hypothetical Structure for Illustration



Representing the C2 architecture as a set of matrices linking personnel, resources, and tasks
results in a meta-matrix with 6 sub-matrices. These 6 sub-matrices are shown in table 1I:
networks, capabilities, assignments, substitutes, needs, precedence. This meta-matrix serves as a
typology for classifying all network based measures of organizational structure. This typology,
by including substitutes, extends the earlier PCANS framework defined by Krackhardt and
Carley [1998]. Known measures of organizational design, such as unity of command, can be
categorized by which of these matrices they take into account. An illustrative measure or two for
each matrix is listed in each cell. A review of network based measures of organizational structure
reveals that most such measures utilize the matrix in only one cell in the meta-matrix. Indeed,
most such measures consider only the personnel-personnel cell. Such measures are typically
referred to as social network measures. A survey of known measures indicates that few exist
which consider substitutes, at least directly. To the extent that social network measures assume
that all nodes are of the same type and that the matrix is square, these measures can be applied to
either substitutes or precedents, albeit with some need for re-interpretation. For the network sub-
matrix measures such as density, hierarchy, and graph connectivity are available for characterizing
graphs [Krackhardt, 1994; Wasserman and Faust, 1994]. While most of these measures can be
applied to any data that can be represented as graphs, whether or not they are meaningful
depends on what data it is. For example, while span of control make sense if the graph
represents the command structure it makes less sense if the graph represents the precedence
ordering among tasks.

There are a few measures that have been developed for networks with two types of nodes
(such as the capabilities, assignments, or needs matrices). However, there are substantially fewer
of these and they have been less explored. There are also more detailed measures of process that
take multiple sub-matrices into account and most theories of organizational performance,
adaptation or change implicitly or explicitly rely on the interactions among two or more sub-
matrices. Further, we can compare and contrast the C2 structures of different organizations by
comparing and contrasting their meta-matrices.

Personnel Resources Tasks

Personnel Networks Capabilities Assignments

5 size 1 coverage 1.8 workload

2 span of control
Resources Substitutes Needs

0 unique 1.5 usage
Tasks Precedents
0.25 complexity

Table 1. Meta-Matrix Representation

We can go from an organizational description and data on a unit (such as a team, group, task
force, or organization) to a matrix by uniquely identifying each personnel, resource and task and
then noting with a 1 that they are connected (i.e., a line occurs in the illustrative structure) and a 0
otherwise. This matrix representation scheme defines a common basis for the comparison of
measures. Representing the C2 architecture in this way enables organizational theories to be
contrasted, compared, and given more precise form [Krackhardt and Carley, 1998]. This



representation can be used for representing all C? structures, irrespective of the source of the
data. For example, hypothetical structures, such as the illustrative structure shown in Figure 1
can be represented (see Table 2). We can represent the C2 structures of organizations that are
simulated, such as those simulated using ORGAHEAD, using this framework. We can represent
the C2 structures of organizations used in laboratory experiments using this framework. For
example, in the next section we represent the C2 structures used in the 4™ A2C2 experiments at
the Naval Post Graduate School and corresponding computer-based simulation experiments on
adaptive architectures. In principle, HR records, the organizational chart, the organization’s
communication network, data from surveys, and so forth can be used as well to fill in this data-
structure.

Personnel Resources Tasks

Personnel 01110 0000 10000011
00001 0010 01000000
00000 0100 00001100
00000 0010 00001000
00000 1000 00110000

Resources  _______ 1000 00000100

Tasks . .. 00000010

Table 2. Illustrative Structure as Meta-Matrix

When there is more than one type of relation in a cell then multiple matrices exist in that
portion of the sub-matrix. These can be combined into a single weighted matrix or treated as
multiplex relations. For example, in the case of the networks cell, we can imagine both authority
relations (who reports to whom) and communication relations (who can send messages to
whom).

3. Utilizing the Typology

Measures defined using this representation scheme way were collected in both laboratory and
computer-based simulation experiments. The human experiments were conducted at the Naval
Post Graduate School as part of the A2C2 project. Portions of the C2 structures from the 4t
experiment are listed in tables 3,4 and 5. Each of these C2 structures, i.e., their meta-matrix



representation, were then used as input to various organizational performance computer models,
such as CONSTRUCT [Carley, 1990; 1991] and ORGAHEAD [Carley & Svoboda, 1996;
Carley & Lee, 1998]. Using the common representation afforded by the meta-matrix enabled us
to compare the predictions of the computer-based simulation model with the human laboratory
data.

Personnel Resources
Authority ICommunication
Personnel [1 11000 111000 111110000000000000000000
110000 111000 000001110000000000000000
101111 111111 000000001111111110000000
001100 001111 000000000000000011111000
A06 001010 001111 000000010000000000000000
001001 001111 000000000000000000000111
1100 1111 011111101100000000000000
1010 1111 000000010011000010111000
A 14 1001 1111 0000000100001 11111100000
Personnel (1 11100 111100 000000001100000000000000
110000 111100 011111100000000000000000
101011 11111 100000010000000000000111
100100 111100 000000000011111000000000
Al6 001010 01011 000000010000000010111000
001001 001011 000000010000000111100000
Table 3: Network and Capabilities sub-matrices for 3 C2 structure for 4™ A2C2
Experiment

These 3 structures differ in the networks, capabilities and assignments. In all cases the
requirements (what resources are needed to do which tasks, table 4), the precedence (which tasks
come before which, not shown), and the substitutes (not shown) are the same. Given these
structures the performance and diffusion properties of the structures were examined.

, ! Resources ]




1100000000000000000000
0000100000000000000000
1111000000000000000000

0000000100000000000000
100000010000000000000010
D00000000100000000000000
000000001000000000000000
000000000100000000000000
000000010000000010100000
00000001000000000000001 1

Tasks 0 1
0 0
0 0
0 0

D00000010000000010100000
000000000000000010100000
000000001000000000000000
000000010000000000000000
000000010000000010100000
000000000000000010100000
000001000000000000000000

D01110000000000000000000
D00000000000000010100000
000000000000000000000001
000000010000000000000010
100000010000000000000000
D00000000000000000000001
100000010000000000000000
000000001000000000000000
000000010000000010100000
D00000000001011000000000
000000010000000010100000
000000010000000010100000

Table 4. Requirements sub-matrix for 3 C2 structure for 4™ A2C2 Experiment

Personnel
A06 Al4 Alb6
Tasks 100000 0100 010000
010000 0100 100000
100000 0100 010000
010000 0100 100000
100001 1000 001000
001000 0100 100000
001000 0100 100000
001000 0100 100000
001110 0001 000001
000001 1000 001000
001110 0010 00010
001110 0001 000001
001100 0100 100000
010010 0100 100000
001110 000 1 00000 1
001110 0010 000010
010000 0100 100000
000001 0100 100000




001110 000 | 000001
000001 1000 001000
100001 1000 001000
100001 1000 001000
000001 1000 001000
000000 0100 100000
011010 0100 100000
010110 0100 100000
001000 0010 000100
001110 000 1 00000 1
001110 0010 000010
[Table 5. Assignment sub-matrices for 3 C2 structure for 4™ A2C2 Experiment

Given the networks and capabilities sub-matrices a measure of expected performance can be
calculated. Expected performance given perfect communication and no unexpected events is
shown on the right on Figure 2. All else being equal, simulation suggest that the 4 node structure,
Al4, is expected to be a high performer. However, in point of fact it is not the best performer.
Actual performance data is shown on the left in Figure 2. So why is this? Further analysis
reveals that in terms of information diffusion, that in A16 information should take the longest to
diffuse on average. However, there is a striking difference in terms of whether that information is
about the coordinating information or whether that information is about resources. In Figure 3
we see that while resource usage information is slow to diffuse in A16, coordinating information
appears to diffuse rapidly. Note, the higher the time-to-diffusion the longer it takes team
members to learn the information on average. This suggests that part of the bases for high
performance is the robustness of this structure in facilitating the flow of information about what
others are doing.

Actual Performance Predicted Performace

80 T T L 110 T L T
751 .

1001
701 1
65f .

901

601 T
55 80

A0O6 Al4 Al6 A06 Al4 Al6

Figure 2. Actual and predicted performance.



Time to Diffusion
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Figure 3. Predicted time to diffusion of coordinating and resource information.
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Figure 4. Cognitive effort of C2 structures

A second, explanation of the relatively high performance of A16 has to do with cognitive
effort. Cognitive effort can be measured as the average sum of the number of personnel, tasks
and resources that each person in a structure needs to contend with. That is, given the meta-
matrix, sum each row in personnel and average by the number of personnel. Doing this provides
the information that in A14 and A06 individuals on average need to expend more effort than in
Al16. The more even spread of cognitive effort in A06 further degrades that structures
performance, as the even distribution of cognitive effort drags every one down, rather than
allowing a few to shine.

4. Conclusion



The proposed typology enables graph-theoretic based measures of C? structures to be
contrasted and analyzed in a systematic fashion. Results indicate a dearth of measures that link
more than one-submatrix. Attempts at predicting performance of organizations based on a single
sub-matrix typically fail. Predictions, such as those herein, that are based on multiple sub-
matrices at once fare better. Using this typology we defined the C2 structure of three teams,
examined in a laboratory setting. Use of the typology as a representation scheme enabled the
three teams to be simulated. These simulations suggested that the reason for differences in
performance had to do with the relative ability of information about what others are doing, versus
what resources are needed for what through the structure defined by multiple sub-matrices.
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Abstract

Computational models of complex
systems, such as teams, task forces, and
organizations can be used to reason about the
behavior of those systems under diverse
conditions. The large number of integrated
processes and variables, and the non-
linearities inherent in the underlying
processes make it difficult for humans,
unassisted by computer simulations, to
effectively reason about the consequences of
any one action. Computer simulation
becomes an important tool for generating
hypotheses about the behavior of these
systems that can then be tested in the lab and
field.

1. Introduction and Motivation

The use of formal techniques in general,
and computational analysis in particular, is
playing an increasingly important role in the
development of theories of complex systems
such as groups, teams, organizations, and
their command and control architectures.
One reason for this is the growing
recognition that the underlying processes are
complex, dynamic, adaptive, and non-linear,
that group or team behavior emerges from
interactions within and between the agents
and entities that comprise the unit (the people,
sub-groups, technologies, etc.), and that the
relationships among these entities are
constrain and enable individual and unit level

* This work was supported in part by the Office of
Naval Rescarch (ONR), United States Navy Grant
No. N00014-97-1-0037.

action. Another reason for the movement to
computational approaches is the recognition
that units composed of multiple people are
inherently computational since they have a
need to scan and observe their environment,
store facts and programs, communicate
among members and with their environment,
and transform information by human or
automated decision making (Baligh, Burton
and Obel, 1990). In general, the aim of this
computational research is to build new
concepts, theories, and knowledge about
complex systems such as groups, teams, or
command and control architectures. This aim
can be, and is being met, through the use of a
wide range of computational models
including  computer-based simulation,
numerical enumeration, and emulation
models that focus on the underlying
processes.

A large number of claims are being made
about the value and use of computer-based
simulation in general and computational
process models in particular. These claims
appear in articles in almost every discipline.
One of the strongest claims is that such
computer-based simulation can be used for
theory development and  hypothesis
generation. Simple, but non-linear processes,
often underlie the team and group behavior.
An example of such a non-linearity is the
decreasing ability of a new piece of
information to alter an agents opinion as the
agent gains experience. As the agent gets
more and more information that confirms a
previously held idea, any information that
disconfirms it is increasingly discounted.
Such non-linearities make it non-trivial to
think through the results of various types of
learning, adaptation, and response of teams
and groups, particularly in changing
environments. Computational  analysis
enables the theorist to think through the
possible ramifications of such non-linear
processes and to develop a series of
consistent
predictions.  These predictions are the
hypotheses that can then be tested in human



laboratory experiments or in live simulations.
Thus, computer-based simulation models can
be, and have been, used in a normative
fashion to generate a series of hypotheses by
running virtual experiments.

2. Virtual Experiments

One of the most effective ways of
generating hypotheses from computational
models is by running a virtual experiment. A
virtual experiment is an experiment in which
the data for each cell in the experimental
design is generated by running a computer
simulation model. In generating this
experiment, standard principles of good
experimental design should be followed. The
results should then be analyzed statistically.
The results of that analysis are the hypotheses
that can be examined using data from human
laboratory experiments, live simulations,
games, field studies, or archival sources. In
conducting a virtual experiment and
generating a series of hypotheses the
followings stages are gone through. Stage 1.
Identify core variables. Stage 2. Explore the
parameter space. Stage 3. Set non-core
variables. Stage 4. Run simulations in
virtual experiment. Stage 5. Statistically
analyze results. To demonstrate the value of
this approach a particular illustrative virtual
experiment is described and is used to
illustrate each of these stages.

2.1 Illustrative Virtual Experiment

To illustrate how a virtual experiment is
done and hypotheses generated, a specific
virtual experiment was run  using
ORGAHEAD (Carley, 1996a; Carley 1998;
Carley and Svoboda, 1996; Carley and Lee,
1998). ORGAHEAD illustrates several
aspects of computational process models:

1. ORGAHEAD has been built in a building
block fashion by adding on to a base
model, additional computational process
modules. This building block approach
is one of the strongest approaches for
building computational models as it
enables the designer to validate the model
as it is developed and to generate
intermediate results.

2. Computational process modules should
have face validity. ORGAHEAD, has

demonstrated this level of validity and
captures the core aspects of unit level
architecture.

3. ORGAHEAD, like any computational
process model, enables huge numbers of
predictions in multiple areas.

4. ORGAHEAD, like any good
computational process model is testable.

ORGAHEAD is a computer-based
simulation model for reasoning about
organizational performance. Performance for
units with different command and control
architectures and different task environments
is predicted. Each member of the
organizational unit is modeled as an agent
with the ability to learn. In ORGAHEAD the
commander can change the C3I architecture
in response to various external and internal
triggers. Each ORGAHEAD agent may be
either a person, a subgroup, or a platform.
Agents are boundedly and structurally
rational and so exhibit limited attention,
memory, information processing capability,
and access to information. The performance
of the unit is determined by the agent's
actions as they process tasks.

ORGAHEAD has been used to make
predictions about training, learning, the
fragility of organizational success, the type of
emergent form, the relative value of different
organizational forms, etc. One of the
interesting predictions from ORGAHEAD is
that organizations can trade individual
experience or learning for structural learning.
Another finding is that, while all successful
organizational forms are similar, their nearest
neighbor may be a completely unsuccessful
form. Thus small changes in an
organization's command and control
architecture, small changes in a group's
structure, can be devastating.

3. A Staged Approach to Hypothesis
Generation

In conducting a virtual experiment and
generating a series of hypotheses the
followings stages are gone through. Stage 1.
Identify core variables. Stage 2. Explore the
parameter space. Stage 3. Set non-core
variables. Stage 4. Run simulations in
virtual experiment. Stage 5. Statistically
analyze results. To demonstrate the value of



this approach a particular illustrative virtual
experiment is described and is used to
illustrate each of these stages.

3.1 Stage 1

Begin by identifying core variables. Core
variables are the parameters or variables of
concern. These core variables should be the
parameters or model modules which are
hypothesized to be the most relevant ones in
affecting the dependent variable of interest.
An example of a core variable in
ORGAHEAD is task complexity.

3.2 Stage 2

Once the parameters have been identified
you need to define which values for each
parameter will be explored. The choice
should reflect concerns with  these
parameters, and expectations as to where
different values of the parameter will effect
different system level behavior. In general,
two or more values should be chosen for
each parameter. For example, for the
parameter task complexity we might choose
values reflecting low, medium and high
complexity. Choosing the parameters and the
values defines a virtual experiment. The
experiment used here is described in Table 1.
These variations of parameters yield 512
different experimental conditions.

Parameter Categories

Task limit 20,000 and 80,000

Task complexity binary and trinary

Task information 7 and 9

Agent ability Sand 7

Stressors Stable and periodic
Unit Size 9, 12, 18, and 36
Shake-ups 1,2,3and 4

Table 1: Summary of Parameters

3.3 Stage 3

Non core variables should be set to be
random, fixed at a level needed for the
analysis, or should be set to match conditions
known to be true of human groups. For
example, ORGAHEAD enables the user to
look at units whose size changes over time.
In this experiment, however, size is fixed.

3.4 Stage 4

At this point simulations can be run. For
each condition, each cell in the table
describing your experiment, you should run
multiple simulations. This is because there
are stochastic elements. If you have a
deterministic model you run each condition
once. These simulations are your virtual
experiment. For example, for the virtual
experiment just described each condition was
simulated 40 times. In general the number of
observations generated via a virtual
experiment will be much larger than that
generated via a human laboratory experiment,
or in a gaming or live simulation situation.
For example, the virtual experiment described
resulted in 20480 data observations at each
point in time.

3.5 Stage 5

Computer-based  simulation ~ models
generate more data than human laboratory
experiments. Nevertheless the results should
still be statistically analyzed. Since there is
so much data, it is possible to conduct
multiple explorations given a single virtual
experiment. For example, for the virtual
experiment just described first the impact of
meta-adaptation strategies on performance
was examined then the impact of meta-
adaptation strategies on the C3I structure was
examined.

For the first analysis, results indicate that,
in order of impact, the four factors which
most affect sustained performance are: the
number of resources available to each agent,
the size of the unit, the length of (amount of
information in and resources associated with)
the task, and the number of shake-ups.
These results are summarized in Table 2.

Predictor Coefficient p value
intercept 0.000000 1.000



Task limit 0.031853 0.000
Task complexity -0.024068 - 0.000

Environmental -0.014568 0.027
stressors

Unit size 0.170226 0.000
Agent ability 0.265205 0.000
Task information 0.091118 0.000
Shake-ups -0.012299 0.063

R2 (adj) = 10.9%, df = 7, 20472, p<0.001

Table 2. Standardized Regression

for Performance.

For the second analysis results indicate
that increasing organizational size and
increasing the task complexity from 7 to 9
bits, reduces the number of re-assignments
(who reports to whom) made and increases
the number of re-taskings (who is doing what
task). The first part of this finding is quite
non-intuitive. If there are more people, then
the probability of a re-assignment should
increase. However, we find this number
decreases implying that units are adapting by
creating more direct linkages between
personnel and task thus reducing the
complexities brought on by inter-
organizational communication. As a side
result the amount of information and the
number of resources available to any one
individual increases.

4. Summary - Value of Computational
Approach to Generating Hypotheses

Computer-based simulation is a valuable
technique for generating hypotheses. As the
previous discussion illustrates, application of
good experimental design results in data that
can be analyzed to generate a wide number of
hypotheses all of which are consistent with
the underlying processes. Computational
modeling allows the analyst to examine a
larger number of parameters and to examine
values or processes that may be impossible to
examine in the human laboratory due to cost
or ethical considerations. = Computational
models are ideally suited to the examination
of dynamic systems and to suggesting the
long term impacts of new technologies.
Another advantage of computational analysis

is that they enable an analysis of groups far
larger in size than can be analyzed in a field
setting. As such, simulations are in essence
tools for doing theory development.
Computational process models are not,
however, a panacea. There are limitations to
their usefulness and there are conditions
where they are more useful than others. A
disadvantage is that such models cannot be
used to conclusively demonstrate what people
do in novel situations.

The areas where computational process
models are most useful are:
1. The system is so complex that even a
simple description involves a large
number of variables.
There are important non-linearities in the
processes.
The variables interact in multiple ways.
There are complex interactions involving
three or more variables.
The analysts interest is in the dynamics of
the system.
The team or group being examined is
composed of more than 3 personnel.
The team or group being examined is
engaged in a knowledge intensive tasks.

Al o

Historically it was possible to test
computational process models by doing a
comprehensive analysis of the impact of all
parameters.  Current process models are
sufficiently complex and veridical that a
complete sensitivity analysis across all
parameters cannot be done; rather,
researchers often use response surface
mapping techniques, experimental designs
and statistical techniques to examine key
aspects of the models. One of the key areas
of research is how to validate and test these
highly complex models.

One technique for validation is
hypotheses validation (see also Carley,
1996b; Carley, Prietula and Lin, 1998).
Once the hypotheses have been generated,
they can then be tested in various settings.
One issue is what to do if the hypotheses is
not validated. There are several reasons that
this might occur. Most notably, the model
may be wrong or the data may have been
collected from a human setting using different
measures or different conditions than in the
model. Thus the first step is to check and



make sure there is a match between the real
and virtual world. If there is a match then the
model is wrong and needs to be adjusted or
discarded.
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