
Architectural Misalignment: An Experience Report

Bass, Matthew
Siemens Corporate

Research, Inc
Matthew.Bass@Siemens.

com

Mikulovic, Vesna
Faculty of Informatics,
Vienna University of

Technology
Vesna.Mikulovic@Siemen

s.com

Bass, Len
Software Engineering

Institute
Carnegie Mellon

University
ljb@sei.cmu.edu

Herbsleb, James; Cataldo,
Marcelo

Carnegie Mellon University
jdh@cs.cmu.edu

mcataldo@andrew.cmu.edu

Abstract
It has been well documented that there is a correlation
between the structure of an architecture and the
organization that produces it. More concretely there is a
correlation between task interdependencies and
coordination among the people or teams realizing these
tasks. The amount of coordination needed among teams
is related to the nature of these task interdependencies.
As the scale and complexity of organization and systems
grow it is not uncommon to have factors such as
geographic boundaries, organization boundaries,
cultural differences, and so forth impede the ability of
certain individuals or teams to coordinate effectively.
While there is some understanding of the factors that
impede the ability of teams to coordinate, the factors that
cause task interdependence in software systems is less
well understood. The current view is that it is the
interactions across module boundaries (assuming a
module is assigned as a task or work item to a single
team) that cause task interdependence; we have found
that this view is not sufficient. In this paper we present
three cases where additional architectural mechanisms
created task interdependencies that the organizations
were unable to accommodate. We go on to discuss the
implications of these findings and suggest future research
activities.

1. Introduction

It has been well established that there is a relationship
between a system’s architecture and the structure of the
organization developing it [3][3]. Essentially this means
that, to a large extent, dependencies among software
engineering tasks will mirror the technical dependencies
among components in the architecture.. Factors such as
organizational boundaries, geographic distance, and
cultural differences reduce the ability of teams to
coordinate [7][8]. When these factors are present it is

important to ensure that these teams do not have tasks
which create a need for them to coordinate beyond their
ability to do so. Evidence suggests that the consequences
of assigning such tasks to teams that are not able to
effectively manage the coordination (we call this
architectural misalignment) can be quite severe [5][13].

Currently the view is that the technical mechanisms
that cause these task interdependency are invocations
across modules (assuming a module is a task assignment
to a single team) [3][6][7][13]. This view leads to a
relatively narrow focus when architects and managers
attempt to align the architecture with the organization.
We have found that this narrow view is not sufficient.
There are additional architectural mechanisms such as
state management, resource utilization, and schedule
synchronization which can also require extensive
interaction among teams.

In this paper we examine three projects where such
mechanisms resulted in architectural misalignment such
that the organization was unable to produce the intended
design. The contribution of this paper is to identify and
present brief case studies of several as-yet unrecognized
sources of misalignment. Awareness of potential
problems is the first step toward being able to manage
them successfully or to choose work assignments that
avoid them altogether.

We can summarize our argument in two main points:
1. The traditional view that it is only the module

interactions that create task interdependencies is
not adequate.

2. Project management and architects together need
to recognize the factors that impede coordination,
the architectural mechanisms that imply
coordination, and the alignment between the two.

In the next section we give the background on the
relationship between architecture and the organization,
what is known about the potential impact of having a
misaligned architecture, what is currently understood

©0-7695-2744-2/06/$20.00 2006 IEEE

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

about the aspects of the architecture that create a need to
coordinate, and the kinds of connectors recognized by the
architectural community. We then give the details for
three systems examining the technical decisions that were
made, the resulting need for coordination, and the issues
that were experienced when trying to coordinate
appropriately. In the final sections we discuss our
conclusions from these observations and propose future
work to address the questions raised.

2. Background

2.1 Organizations and Architectures

That interpersonal coordination is an important aspect
of software engineering is not in question [1]. As the
scale and complexity of the system grows, the
coordination needs grow as well. Melvin Conway
recognized this in his now widely known paper “How Do
Committees Invent?” [3]. Conway, recognizing that the
structure of the architecture dictated the need for
coordination amongst technical folks, reasoned that to
manage this coordination the system would need to be
split into components with limited technical
dependencies, and these components would need to be
assigned to no more than one team (resulting in a
homomorphic relationship between the architecture and
the organization).

Since Conway’s paper, others have recognized the
relationship between the architecture of a system and the
structure of the organization that produces it. In his paper
on modular design [6], Parnas considered modules to be
work units. Limiting the interactions amongst modules
would allow them to be developed in parallel by separate
teams with minimal interactions among them. Kraut and
Streeter indicate that while certain factors increase the
need for coordination or impede the ability of an
organization to coordinate effectively, the original need
for coordination comes from dependencies in the
architecture that span tasks [1].

2.2 Impact of Architectural Misalignment

The importance of these ideas has become clearer over
time. As the scale and complexity of systems continues
to grow, the ability to have unrestricted coordination
amongst all team members diminishes. It is not
uncommon to have organizational or geographic
boundaries exist amongst development teams, impeding
the ability to coordinate [7][8]. As Henderson and Clark
noted in [5] the consequences for having an architecture
misaligned with an organization can be disastrous.

2.3 Current Understanding of Alignment

Given the fact that there needs to be an alignment
between the coordination needs imposed by an
architecture and the coordination capability of an
organization, it makes sense to understand specifically
what aspects of an architecture imply the need to
coordinate. Starting with Parnas’s work on decomposing
systems into modules (in this paper we use the term
“module” and “component” interchangeably) there was a
recognition that invocations from one part of the system
to another imply the teams developing these parts of the
system will need to coordinate. Thus, by having “loosely
coupled” components with well defined invocations
amongst them, teams can work relatively independently
coordinating only on these narrowly defined interfaces
that span components [6][9][9][13]. In other words
current wisdom (based on the literature and our
experience in practice) believes that it is the invocation
mechanisms for connecting components (e.g. component
A “calls” component B) that creates the need for
organizational coordination.

Our experience is that this belief influences the
decisions made by architects and project managers. As
we will see in some of the examples given in this paper,
architects will explicitly consider work allocation when
decomposing a system. In addition extra effort will be
made to “loosely couple” or minimize the complexity and
number of invocations between components assigned to
teams that have a limited ability to coordinate.

2.4 Architectural Connectors

As recognized by the architectural community,
however, there are other kinds of connectors that require
coordination between architectural entities of the system
([11], [12]). Things like timing schedules, shared
resource, and state management also impose the need for
coordination between components of a system. These
kinds of connectors are not, however, typically
considered explicitly when looking at the coordination
needs imposed on an organization by an architecture.

The practical result of this line of thinking is that
project managers need to understand the aspects of the
architecture that are relevant for their concerns (e.g.
structuring the developing organization, task allocation,
setting up the development and management processes,
and monitoring the progress of the development). With
the current understanding they would use measures of
coupling and a call graph of the architecture as input. For
example, if two teams are geographically distributed and
less likely to be able to coordinate effectively, they should

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

be given components of the system that have few
invocations between them.

Additionally architects typically deal with the most
important decisions first and defer less important
decisions until later. The importance of decisions is
typically determined by some combination of importance
to the organization and some measure of risk. If based on
the structure of an organization, certain decisions become
more or less risky, this has an impact on how important
they are and how much attention they should receive from
the architects. In order to do this, however, there would
need to be some explicit recognition of the ways in which
the architecture and the organization relate.

3. Case Studies

3.1 System 1

System Goals: System 1 is a platform designed to
support a family of real-time embedded products. These
products vary across several dimensions including
features supported, available memory, and timing
requirements, and within a given product segment the
additional functionality is expected to be added regularly
over the lifetime of the platform.

The main motivators for the architecture team were:
Flexibility: As the platform was intended to
support a diverse customer base with a variety of
needs the platform needed to be able to quickly
and easily be instantiated in configurations
supporting a variety of hardware devices and
software applications.
Easy to Use: Some customers required the ability
to be able to extend the system to support custom
Human Machine Interface (HMI), and so the
platform had to support this with a minimum of
cost and training.
Cost and Risk Minimization: As the market
demanded high quality and reliability, the
company developing the platform wanted to
minimize the “non-compliance costs” (costs
associated with recall of the devices from the
field).
Reduce Time to Market: There was a desire to
reduce the time to market for the product
instantiations developed with the platform.

Ease of development was explicitly considered as a
primary motivation.
 In addition the system had a set of performance,
reliability and resource utilization requirements. There
were specific performance requirements dealing with
system startup that indicated the allowable latencies for
bringing particular functionality online. There were also

memory utilization requirements that could not be
exceeded.

 System Description: Considering the needs that the
system had to fulfill (described above), the architecture
team settled on several approaches. These approaches
were selected based on their proved success in other
projects. The primary architectural concepts chosen
were:
 Frameworks: A framework was developed to provide
the basic building blocks for a family of components.
The framework supported common concepts and helped
enforce compliance with the defined Meta Architecture.
Use of a framework was selected in order to help address
the need to allow for reduction in time to market, the
ability to allow other developers to be able to quickly and
easily extend the system (e.g. by adding a custom HMI),
and to mitigate quality risks.
 Component Based Solution (CBSD): System 1 was
developed as a component based solution using a
component integration framework. This framework
handled the lifecycle management of the components and
allowed for upgrade scenarios both in the field and at
development time. The components were “loosely”
coupled with well defined interfaces allowing for
development by independent teams (at least in theory).
The idea was that this would allow for increasingly
parallel development, as well as simplify integration
issues at various stages of the lifecycle.
 Dependencies against interface specifications rather
than component implementations: Inline with the desire
to maintain “loosely” coupled components that could be
swapped out at any point in the system lifecycle; the
teams were to ensure that they developed their particular
modules against the interface specifications. This meant
that they were not to implement them in such a way as to
be dependent on the component implementations of
another team.
 In order to address the performance and resource
utilization requirements the architects borrowed heavily
on past solutions. These were standard kinds of
requirements in this industry and several legacy products
existed that had fulfilled similar requirements. The
architectural mechanisms include:

Separation of concerns: The system had several types
of memory, CPU, Cache, RAM and Flash. The
architecture group restricted the use of various kinds of
memory for particular purposes, and partitioned the RAM
into several logical partitions each for its own part of the
system. For each part of the system (OS, dynamic
allocation for object management, native portions of the
system, java partitions, …) memory utilization was
estimated (or in some cases measured). Much of the
functionality lived in the same memory partition.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Priority based scheduler: The performance
requirements were to be dealt with by using a priority
based scheduler. Thread priorities were assigned by
using a coarse grained classification scheme allowing for
10 categories of threads. Start-up performance was to be
optimized by saving state upon shutdown and restoring
this state upon startup.

Organizational Structure: Previously the
organization developed their solutions using tightly knit
collocated teams. Over the last several years, however,
several smaller companies were acquired resulting in
development capabilities in several geographic locations.
System 1 was intended to be a platform used for the next
generation of products across the company including the
products developed at these disparate sites. The design
and implementation for System 1 was staffed with people
from each of the development sites. As this was an effort
of strategic importance with high external visibility, the
best people from each site were selected to work on
system 1.
 There were in total four development sites with two in
Germany and two in France. There was a central
architecture team made up of the most qualified
representatives from each site, and each site had
responsibility for the design and development of one or
more subsystems.
 The architecture team would meet regularly (as often as
every week) in various locations for design meetings.
They were responsible for defining the high level
architecture. This included selecting the architectural
concepts appropriate to achieve the driving requirements,
allocation of responsibilities to the components, interface
specification for the primary components, and
specification of concerns that spanned the individual
subsystems.
 The overall project was managed from one of the main
sites in Germany with the project manager spending much
of his time traveling to the various sites. The total
development effort for version one was around 400 staff
years implemented in roughly four calendar years. The
size of each development site was more or less equal.

 Issues Experienced: At the time this report was
written, two versions of System 1 had been built. The
system had been deployed in limited numbers in the field.
While there were many issues, as is normal with a system
of this size and complexity (this was an embedded system
with over 3 million SLOC), some of the issues were not
expected and had a major impact on the business success
of the platform. The system had stability problems. It
would “hang” periodically and give the perception of a
software failure. In addition the system was not able to
stay within its memory budget during startup.

Performance was also a problem (in addition to the
hanging problem) during startup (i.e. the system was
unable to bring certain features online within the required
time during startup).
 Many of the smaller issues were solved, but the
memory, performance, and stability issues (or hangs)
were not so easily solved. The organization maintained
the same structure for some time trying to track down and
deal with these issues. When this proved to be
unsuccessful they appointed a performance and memory
management team to be in charge of this aspect of the
system. This team was to manage the resolution of these
issues with the architects and the involved design and
development teams.
 While overall some progress was made, the impact on
the overall market’s perception of the platform was
significant. In order to realize specific product
instantiations, additional features needed to be integrated
into the platform. For business reasons they attempted to
do this development and integration in parallel with the
resolution of the performance and memory issues, further
compounding the problems. These issues were the topic
of board level discussions across companies and
ultimately led to key customers switching to competing
products representing a significant loss of revenue.

Analysis: In looking at the issues and the events that
preceded the issues a couple things became apparent.

Resolving the performance and memory conflicts was
a coordination intensive activity: Only informal
calculations were used to determine if the prioritization
scheme would achieve the performance requirements.
This required extensive testing (and subsequent re-
prioritization) to validate that these latencies could be
met. When they were violated, extensive coordination
between the teams familiar with the code competing for
CPU time was required. There was no upfront
recognition that this was a possibility. The architects
assumed that the prioritization rules were adequate to
allow the teams to work independently. This was largely
due to a similar mechanism working for previous
solutions. What was not recognized, however, was that
much tweaking was required in the previous solutions as
well. This tweaking didn’t have the same coordination
impact on the previous development team, however, as
they were collocated and able to coordinate effectively
without unduly disrupting the schedule or sacrificing
quality.

The organizational structure inhibited coordination
concerning performance and memory issues: While the
architecture team was ultimately responsible for the
performance and memory characteristics of the system,
the implication of their decisions (the scheduling policy,
and resources utilization policy) was that many decisions
were deferred to the development teams.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

 The impact of the local decisions was not recognized
until late in the development lifecycle. Once it was
recognized, it was difficult to coordinate as many of the
teams involved were distributed and only vaguely
familiar with the activities of the other teams. After the
difficulties of version one the organization tried to
restructure accordingly and created a performance team.
This performance team was responsible for identifying
the source of the issues and managing the coordination
amongst the involved teams to resolve the issues. This
also proved to be problematic. While there was a single
group that was responsible for the issues, much
coordination was needed to understand exactly what was
happening in the system at runtime and how the processes
and threads were interacting to use memory and CPU
time.
 In this project the architecture team was explicitly
concerned with the ability of the organization to deliver
the system in a timely manner. This concern, however,
only resulted in considering the component framework
and functional decomposition of the system. There was
no understanding of the impact of the performance and
memory management decisions on the organization until
it was too late. Likewise project management only
became aware of the inadequacy of the existing
organizational structure for this system once complex
issues began to surface. They then tried to reorganize to
address these issues, but it was too little too late.

3.2 System 2

System Goals: System 2 was a PC based application
that interacted with networked embedded devices. The
primary purpose of the system was to display status of the
devices on the system (a non-critical function), but there
were other capabilities that could have safety implications
under certain situations. As a result, specific aspects of
the system had to have high availability. The
functionality of the system was not overly complex
compared to systems built in the past, but the scale of the
application was larger than the developing company was
used to for this particular class of system. The
development effort was around 300 staff years, about
twice the size of the next largest effort.

Unlike system 1, system 2 was a custom application
being developed for a specific customer. Again this was
a highly visible project (visible both within the company
as well as in the general public) that represented the
largest such project that this organization had done to date
with the potential for a much larger order upon successful
completion. There were architecturally significant
requirements that were deemed important including:

Defined startup times after which all
functionality must be available
Failover times

Availability requirements
Fault tolerance requirements
Various failure modes (i.e. a “safe state”)
Minimize development costs

 The availability and startup requirements were
imposed by the customer and to be validated in various
testing phases. As this was a fixed price project (with a
bonus/malice clause) the developing organization had an
incentive to minimize development costs and schedule.

System Description: The architecture team for System
2 also decided to use a component based solution. They
focused on defining a set of components with an explicit
set of responsibilities, interfaces, and behavior. System 2
was developed using J2EE technologies. CBSD was
selected primarily to reduce development costs.
 In order to achieve the availability requirements the
architects made several decisions:

Decentralized system: In order to minimize
the impact of failures on various aspects of the
system, the architects reduced the functionality
that was managed centrally. Most of the logic of
the system was to be replicated on many
machines to handle activities of a specific
location. A protocol was devised so that these
local machines could continue to operate in the
event that they lost communication with the
central system (see figure 1).
Redundant components: The central
components were developed so they could be
deployed redundantly.
Complete backup system: The system was
intended to have a complete backup system that
mirrored the functionality and state or the
primary system.
Watchdogs: In addition there were component
level watchdogs to monitor the status of
important components and allow the system to
attempt restarts at the component level.

Organizational Structure: For system 2 the customer,
primary responsibility for system level requirements, and
system engineers were in the US. The software architects
were located in Western Europe and the software
developers were primarily in Eastern Europe.
 The groups in the US and Western Europe were in
different divisions of the same operating company. Both
the system and software side, however, had several
outside consultants on the team. This included some key
positions on the software architecture team. The group in
Eastern Europe was part of a different operating company
(but from the same overall organization) as the other
groups.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

 Overall there was little history working together by the
individual participants on this project. The two operating
companies involved had collaborated on many past
projects, but the individuals on this particular project had
not worked together in the past. Likewise the personnel
from the US and Western Europe had not interacted
together in the past.
 Frequent trips were made by key personnel in all
directions and as the project progressed several of the
software architects were located full time in Eastern
Europe with the software developers and testers.
Software teams were aligned with the various sub-
systems, the UI, the database, and testing.

Figure 1

 Issues: Ultimately the organization was not successful
in implementing this architecture. The project was
reorganized and a new architecture was developed. The
issues that led to this failure were primarily realized as
stability issues. The system was never able to become
stable enough to get past system testing. Many of the
issues that caused the stability problems had their roots in
the complex synchronization mechanisms.

Analysis: Part of the decision to use a decentralized
solution included decentralized caching of data. This
included configuration data as well as application data.
While this improved performance and availability of data
it made synchronizing state across the various elements of
the system quite complicated. Decisions around state
management were largely deferred to the sub-system
teams. As each team made local decisions regarding state
management this was handled inconsistently across the
various sub-systems.
 The decentralized caching of data and state
management within the sub-systems created many
interdependencies across the tasks of the various sub-
system teams. The overall correct operation of the system
relied on correct and consistent synchronizations
mechanisms which involved many aspects of the system
and was largely impacted by the decisions about state
management and complicated due to the local caching of
data.

 The organization had significant difficulty recognizing
these issues and working together as a team to solve
them. There was a lot of finger pointing (e.g. “that is
really the responsibility of team A”) amongst teams when
close cooperation was needed to resolve the issues.
 Mistrust existed amongst the different organizational
entities and as problems emerged various managers
seemed to work hard to deflect blame. This problem
seemed to be exacerbated by the disparate entities
involved. With a large number of external consultants,
several divisions, and management chains involved the
individuals had no history of working as a team and had
different motivations and incentives.
 Looking at these issues with respect to our initial
argument we see that there were several aspects of the
architecture that required extensive coordination among
disparate teams, namely how to synchronize state across
sub-systems.
We also can see that because of the nature of the
organization (e.g. geographic and organizational
boundaries), the ability of the organization to coordinate
was impeded. These issues were not explicitly
recognized and planned for, however. The project
managers and architects were both diligently performing
their duties and even trying to account for the other’s
concerns, but were unaware of the impact of these
architectural decisions on the organization.

3.3 System 3

System Goals: The third system was also a platform
effort. This platform allowed for the integration of a suite
of related products to realize functionality needed by the
target markets. The products were devices (e.g. sensors,
actuators), embedded controllers, and SCADA systems.
The primary goal of the platform was to enable a
collection of these products to function as a single system
from the end user/customers perspective. In addition the
domains in which these systems were deployed had
diverse needs with respect to performance, reliability, and
availability as well. This platform was intended to live
for 10 – 15 years and so had to accommodate future
customer needs in order to remain viable in the
marketplace. One such feature introduced by the market
was the need to support versioning of system data.

System description: This system was organized as a
loosely coupled collection of sub-systems or distinct
applications (depending on your perspective). At runtime
these subsystems operated largely independently (e.g.
deployed on their own hardware). The interactions
among these systems was built on defined (often
standards based) protocols. Complex scheduling policies
across subsystems was not required as most of the
concurrency was within a given system. To

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

accommodate the performance needs budgets were
allocated to each subsystem. When estimated execution
times were uncertain prototypes were developed to help
ensure the budgets were realistic. Data management was
decentralized. Each subsystem managed and stored its
own data (see figure 2).

Figure 2

Organizational Structure: In this project there was an
overall platform architecture team located in Europe.
This team was responsible for the definition of any aspect
of the architecture that required coordination of more than
one of the subsystems. Each subsystem group was
organized as an independent project with its own project
manager, architects, developers, testers, and so forth. The
integration of these subsystems, as needed to handle the
total system features, was set up as a project as well with
project managers and testers. Competing schedules were
managed by the project manager of this project.
 Each of these teams spanned organizational
boundaries. Geographic boundaries existed both within a
particular project and across projects. There were regular
meetings of management to coordinate priorities across
projects and technical had frequent interactions across
projects as well. Several technical teams existed with
representatives of all of the projects participating (if not
all of the sites).

Issues: In many ways this was a very successful
effort. These subsystems were sold individually and with
great success. Likewise they were integrated and sold as
a total solution. The issues arose, however, during the
evolution of the system. There was a request from
marketing to introduce versioning of the data into the
complete system. All of the individual subsystems had
versioning capabilities, but they were inconsistent and did
not result in a single solution from the customer’s
perspective. A technical solution was devised for how to
resolve the divergent versioning strategies. The
organization was unable to realize this solution, however.
The reasons reported were the complexities in
coordinating the different groups involved. The result of
this difficulty was that the initial solution was discarded
and an alternative was designed with a centralized
datastore (see figure 3).

Figure 3

Analysis: In looking at the details of this situation it
was in some ways different from the previous two. In
this case (as in the others) there was a technical decision
that required coordination amongst teams in order to
realize. It was also the case in system 3 (as in the others)
that the ability for the teams to coordinate was impeded.
In this case, however, it was the organizational
boundaries that were the primary contributors to the
coordination impedance. As the subsystem groups were
organizationally distinct, they had their own management
structure, their own schedules, and their own priorities.
The decision to decentralize the datastores meant that for
the addition of a unified versioning mechanism
coordination across groups was required. It became too
difficult to synchronize the release schedule in such a way
that business objectives could be met.
The second design, however, with the centralized
datastore was well aligned with the organization. It did,
however, end up requiring additional coordination in
different areas. In order to meet particular performance
requirements, for example, now involved the coordination
of many more disparate teams.

4.0 Conclusions

In each of these three systems we see examples of
architectural decisions other than invocations across
modules that create significant dependencies across tasks.
In system 1 it was the scheduling strategy and the strategy
for managing resource consumption, in system 2 it was
trying to manage state synchronization, and in system 3 it
was trying to synchronize the release schedules to realize
a particular customer feature. Furthermore the task
interdependencies created by these architectural decisions

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

resulted in coordination needs that could not be met by
the organization. It was explicitly recognized in all three
cases that invocations across modules assigned to
different teams implies coordination among those teams.
This recognition was not adequate, however, to ensure
that the architecture was buildable by the organization.
 We recognize that this need for coordination would
not be an issue in all cases. Some organizational
structures could accommodate these decisions without
problems. If for example, there were no organizational
boundaries across the subsystems in organization 3, it
likely would have been simpler to manage the release
schedules. There would not have been different product
management teams imposing conflicting priorities on the
various teams. Organization one had in fact previously
been successful at implementing a similar architecture in
their legacy system. It was only once they had distributed
teams that coordination issues arose. In short it is not the
architectural mechanisms in isolation that cause a
problem; it is the combination of these mechanisms with
particular factors that cause the misalignment.
 It is this fact which motivates our second point. It is
neither the organizational structure nor the architectural
decisions in isolation that cause a problem, but rather the
lack of alignment across these areas. This speaks for the
need to consider both the organizational situation and the
architectural mechanisms together. This is currently an
issue, however, as there isn’t typically one person that has
insights into both areas, and there isn’t a common
understanding of what the relationship between these two
areas of concern is. The architect(s) are concerned with
the technical decisions, the project manager is concerned
with the organizational factors, and there is inadequate
recognition of how these two groups need to interface.
All too often this results in misalignment as we have seen
in these three cases often having a significant detrimental
effect on the schedule, quality, or even the likelihood of
project completion. Thus we feel it is important to more
precisely define these areas of connection in order to
allow for the architectural alignment to be explicitly
considered early enough in the project that corrective
action can be taken without undue expense or delay.

5.0 Future Work

In order to understand what it will take to align
organizations and architectures we first need to:

Understand precisely what architectural
mechanisms imply the need for coordination
Understand more about the organizational
characteristics that impede or support
coordination
Understand what the relationship is between the
particular architectural mechanisms that imply

coordination and different organizational
characteristics

 While these three points describe a formidable,
long-term research agenda, we will start by collecting
several kinds of data from executing projects. First we
need to have data regarding the kinds of technical
dependencies that exist in the architecture. We need to
know about the allocation of tasks to teams, we need to
have an understanding of the kind of coordination that
occurred across teams, and we need to have an
understanding of what the results were (e.g. quality
issues, successful realization of the solution, delays, and
so forth). We can then analyze this data to determine the
precise nature of the coordination required by varioius
architectural mechanisms, and which organization factors
facilitated or inhibited coordination.
 In the long run the vision is to have some means to be
able to analyze the coordination capability of a particular
organization, evaluate the coordination needs of a
particular design, determine the relative “fit” between the
two, and have tactics that can be made to the design, the
organization, or both in the event of significant mismatch.

 6.0 Acknowledgements

The authors gratefully acknowledge support by NSF
grant IIS-0534656, as well as support from the Software
Industry Center and its sponsors, particularly the Alfred
P. Sloan Foundation. The authors would also like to thank
the Software Engineering Institute, the US Department of
Defense, and Siemens Corporate Research for their
sponsorship and support.

12. References

[1] Kraut, R. & Streeter, L. (1995). Coordination in large
scale software development. Communications of the
ACM, 38(3), 69-81.

[2] B. Curtis, H. Krasner, and N. Iscoe, “A Field Study
of the Software Design Process for Large Systems,”
Comm. ACM, vol. 31, no. 11, pp. 1268-1287, 1988.

[3] M.E. Conway, "How Do Committees Invent?"
Datamation, Vol. 14, No. 4, 1968, pp. 28-31.

[4] Herbsleb, J.D. & Mockus, A. An Empirical Study of
Speed and Communication in Globally-Distributed
Software Development (2003). IEEE Transactions
on Software Engineering, 29, 3, pp. 1-14.

[5] Henderson, R.M. and Clark, K.B. Architectural
innovation: the reconfiguration of existing product
technologies and the failure of established firms.
Administrative Science Quar-terly, 35, 1 (Mar.
1990), 9-30.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

[6] Parnas, D.L. On the criteria to be used in
decomposing systems into modules. Comm. ACM,
15, 12 (Dec. 1972), 1053-1058.

[7] Herbsleb, J.D. and Grinter, R.E. Splitting the
organization and integrating the code: Conway’s law
revisited. In Proceedings of the International
Conference in Software Engineering (ICSE ’99), Los
Angeles, 2004, 85-95.

[8] Clements, P and Northrop, L, Software Product
Lines: Practice and Patterns. Addison-Wesley, 2001

[9] De Souza, C.R.B., Redmiles, D., Cheng, L.T.,
Millen, D., and Patterson, J. Sometimes You Need to
See Through Walls – A Field Study of Application
Programming Interfaces. Computer Supported
Cooperative Work, 2004, Chicago, Illinois

[10]Grinter, R.E., Herbsleb, J.D., Perry, D.E. The
Geography of Coordination: Dealing with Distance
in R&D Work Group 99, 1999 Phoenix, AZ

[11]Shaw, M and Garlan, D., Software Architecture:
Perspectives on an Emerging Discipline, Prentice
Hall, 1996

[12]Mehta, N.R., Medvidovic, N., and Phadke, S..
“Towards a Taxonomy of Software Connectors.” In
Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000), pages 178-187,
Limerick, Ireland, June 4-11, 2000

[13]Ovaska, P., Rossi, M., and Marttiin, P.,”Architecture
as a coordination tool in multisite software
development” In Software process improvement and
practice pages 243-247, John Wiley & Sons Ltd,
Oct/Dec 2003

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

