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Abstract
It has been well documented that there is a correlation 
between the structure of an architecture and the 
organization that produces it.  More concretely there is a 
correlation between task interdependencies and 
coordination among the people or teams realizing these 
tasks.  The amount of coordination needed among teams 
is related to the nature of these task interdependencies.  
As the scale and complexity of organization and systems 
grow it is not uncommon to have factors such as 
geographic boundaries, organization boundaries, 
cultural differences, and so forth impede the ability of 
certain individuals or teams to coordinate effectively.  
While there is some understanding of the factors that 
impede the ability of teams to coordinate, the factors that 
cause task interdependence in software systems is less 
well understood.  The current view is that it is the 
interactions across module boundaries (assuming a 
module is assigned as a task or work item to a single 
team) that cause task interdependence; we have found 
that this view is not sufficient.  In this paper we present 
three cases where additional architectural mechanisms 
created task interdependencies that the organizations 
were unable to accommodate.  We go on to discuss the 
implications of these findings and suggest future research 
activities. 

1. Introduction 

It has been well established that there is a relationship 
between a system’s architecture and the structure of the 
organization developing it [3][3].  Essentially this means 
that, to a large extent, dependencies among software 
engineering tasks will mirror the technical dependencies 
among components in the architecture..  Factors such as 
organizational boundaries, geographic distance, and 
cultural differences reduce the ability of teams to 
coordinate [7][8].  When these factors are present it is 

important to ensure that these teams do not have tasks 
which create a need for them to coordinate beyond their 
ability to do so.  Evidence suggests that the consequences 
of assigning such tasks to teams that are not able to 
effectively manage the coordination (we call this 
architectural misalignment) can be quite severe [5][13].   

Currently the view is that the technical mechanisms 
that cause these task interdependency are invocations 
across modules (assuming a module is a task assignment 
to a single team) [3][6][7][13].  This view leads to a 
relatively narrow focus when architects and managers 
attempt to align the architecture with the organization.  
We have found that this narrow view is not sufficient.  
There are additional architectural mechanisms such as 
state management, resource utilization, and schedule 
synchronization which can also require extensive 
interaction among teams.  

In this paper we examine three projects where such 
mechanisms resulted in architectural misalignment such 
that the organization was unable to produce the intended 
design.  The contribution of this paper is to identify and 
present brief case studies of several as-yet unrecognized 
sources of misalignment.  Awareness of potential 
problems is the first step toward being able to manage 
them successfully or to choose work assignments that 
avoid them altogether. 

We can summarize our argument in two main points: 
1. The traditional view that it is only the module 

interactions that create task interdependencies is 
not adequate.

2. Project management and architects together need 
to recognize the factors that impede coordination, 
the architectural mechanisms that imply 
coordination, and the alignment between the two.

In the next section we give the background on the 
relationship between architecture and the organization, 
what is known about the potential impact of having a 
misaligned architecture, what is currently understood 
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about the aspects of the architecture that create a need to 
coordinate, and the kinds of connectors recognized by the 
architectural community. We then give the details for 
three systems examining the technical decisions that were 
made, the resulting need for coordination, and the issues 
that were experienced when trying to coordinate 
appropriately.  In the final sections we discuss our 
conclusions from these observations and propose future 
work to address the questions raised. 

2. Background 

2.1 Organizations and Architectures 

That interpersonal coordination is an important aspect 
of software engineering is not in question [1].  As the 
scale and complexity of the system grows, the 
coordination needs grow as well.  Melvin Conway 
recognized this in his now widely known paper “How Do 
Committees Invent?” [3].  Conway, recognizing that the 
structure of the architecture dictated the need for 
coordination amongst technical folks, reasoned that to 
manage this coordination the system would need to be 
split into components with limited technical 
dependencies, and these components would need to be 
assigned to no more than one team (resulting in a 
homomorphic relationship between the architecture and 
the organization).  

Since Conway’s paper, others have recognized the 
relationship between the architecture of a system and the 
structure of the organization that produces it.  In his paper 
on modular design [6], Parnas considered modules to be 
work units. Limiting the interactions amongst modules 
would allow them to be developed in parallel by separate 
teams with minimal interactions among them.  Kraut and 
Streeter indicate that while certain factors increase the 
need for coordination or impede the ability of an 
organization to coordinate effectively, the original need 
for coordination comes from dependencies in the 
architecture that span tasks [1].

2.2 Impact of Architectural Misalignment

The importance of these ideas has become clearer over 
time.  As the scale and complexity of systems continues 
to grow, the ability to have unrestricted coordination 
amongst all team members diminishes.  It is not 
uncommon to have organizational or geographic 
boundaries exist amongst development teams, impeding 
the ability to coordinate [7][8].  As Henderson and Clark 
noted in [5] the consequences for having an architecture 
misaligned with an organization can be disastrous. 

2.3 Current Understanding of Alignment 

Given the fact that there needs to be an alignment 
between the coordination needs imposed by an 
architecture and the coordination capability of an 
organization, it makes sense to understand specifically 
what aspects of an architecture imply the need to 
coordinate.  Starting with Parnas’s work on decomposing 
systems into modules (in this paper we use the term 
“module” and “component” interchangeably) there was a 
recognition that invocations from one part of the system 
to another imply the teams developing these parts of the 
system will need to coordinate.  Thus, by having “loosely 
coupled” components with well defined invocations 
amongst them, teams can work relatively independently 
coordinating only on these narrowly defined interfaces 
that span components [6][9][9][13].  In other words 
current wisdom (based on the literature and our 
experience in practice) believes that it is the invocation 
mechanisms for connecting components (e.g. component 
A “calls” component B) that creates the need for 
organizational coordination. 

Our experience is that this belief influences the 
decisions made by architects and project managers.  As 
we will see in some of the examples given in this paper, 
architects will explicitly consider work allocation when 
decomposing a system.  In addition extra effort will be 
made to “loosely couple” or minimize the complexity and 
number of invocations between components assigned to 
teams that have a limited ability to coordinate.   

2.4 Architectural Connectors 

As recognized by the architectural community, 
however, there are other kinds of connectors that require 
coordination between architectural entities of the system 
([11], [12]).  Things like timing schedules, shared 
resource, and state management also impose the need for 
coordination between components of a system.  These 
kinds of connectors are not, however, typically 
considered explicitly when looking at the coordination 
needs imposed on an organization by an architecture.  

The practical result of this line of thinking is that 
project managers need to understand the aspects of the 
architecture that are relevant for their concerns (e.g. 
structuring the developing organization, task allocation, 
setting up the development and management processes, 
and monitoring the progress of the development).  With 
the current understanding they would use measures of 
coupling and a call graph of the architecture as input.  For 
example, if two teams are geographically distributed and 
less likely to be able to coordinate effectively, they should 
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be given components of the system that have few 
invocations between them.  

Additionally architects typically deal with the most 
important decisions first and defer less important 
decisions until later.  The importance of decisions is 
typically determined by some combination of importance 
to the organization and some measure of risk.  If based on 
the structure of an organization, certain decisions become 
more or less risky, this has an impact on how important 
they are and how much attention they should receive from 
the architects.  In order to do this, however, there would 
need to be some explicit recognition of the ways in which 
the architecture and the organization relate. 

3. Case Studies 

3.1 System 1 

System Goals: System 1 is a platform designed to 
support a family of real-time embedded products.  These 
products vary across several dimensions including 
features supported, available memory, and timing 
requirements, and within a given product segment the 
additional functionality is expected to be added regularly 
over the lifetime of the platform. 

The main motivators for the architecture team were: 
Flexibility:  As the platform was intended to 
support a diverse customer base with a variety of 
needs the platform needed to be able to quickly 
and easily be instantiated in configurations 
supporting a variety of hardware devices and 
software applications. 
Easy to Use: Some customers required the ability 
to be able to extend the system to support custom 
Human Machine Interface (HMI), and so the 
platform had to support this with a minimum of 
cost and training. 
Cost and Risk Minimization:  As the market 
demanded high quality and reliability, the 
company developing the platform wanted to 
minimize the “non-compliance costs” (costs 
associated with recall of the devices from the 
field).
Reduce Time to Market:  There was a desire to 
reduce the time to market for the product 
instantiations developed with the platform. 

Ease of development was explicitly considered as a 
primary motivation. 
     In addition the system had a set of performance, 
reliability and resource utilization requirements.  There 
were specific performance requirements dealing with 
system startup that indicated the allowable latencies for 
bringing particular functionality online.  There were also 

memory utilization requirements that could not be 
exceeded.

     System Description:  Considering the needs that the 
system had to fulfill (described above), the architecture 
team settled on several approaches.  These approaches 
were selected based on their proved success in other 
projects.  The primary architectural concepts chosen 
were:
     Frameworks:  A framework was developed to provide 
the basic building blocks for a family of components.  
The framework supported common concepts and helped 
enforce compliance with the defined Meta Architecture.  
Use of a framework was selected in order to help address 
the need to allow for reduction in time to market, the 
ability to allow other developers to be able to quickly and 
easily extend the system (e.g. by adding a custom HMI), 
and to mitigate quality risks. 
     Component Based Solution (CBSD):  System 1 was 
developed as a component based solution using a 
component integration framework.  This framework 
handled the lifecycle management of the components and 
allowed for upgrade scenarios both in the field and at 
development time.  The components were “loosely” 
coupled with well defined interfaces allowing for 
development by independent teams (at least in theory).  
The idea was that this would allow for increasingly 
parallel development, as well as simplify integration 
issues at various stages of the lifecycle. 
     Dependencies against interface specifications rather 
than component implementations:  Inline with the desire 
to maintain “loosely” coupled components that could be 
swapped out at any point in the system lifecycle; the 
teams were to ensure that they developed their particular 
modules against the interface specifications.  This meant 
that they were not to implement them in such a way as to 
be dependent on the component implementations of 
another team. 
          In order to address the performance and resource 
utilization requirements the architects borrowed heavily 
on past solutions.  These were standard kinds of 
requirements in this industry and several legacy products 
existed that had fulfilled similar requirements.  The 
architectural mechanisms include: 

Separation of concerns:  The system had several types 
of memory, CPU, Cache, RAM and Flash.  The 
architecture group restricted the use of various kinds of 
memory for particular purposes, and partitioned the RAM 
into several logical partitions each for its own part of the 
system.  For each part of the system (OS, dynamic 
allocation for object management, native portions of the 
system, java partitions, …) memory utilization was 
estimated (or in some cases measured).  Much of the 
functionality lived in the same memory partition. 
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Priority based scheduler:  The performance 
requirements were to be dealt with by using a priority 
based scheduler.  Thread priorities were assigned by 
using a coarse grained classification scheme allowing for 
10 categories of threads.  Start-up performance was to be 
optimized by saving state upon shutdown and restoring 
this state upon startup. 

Organizational Structure:  Previously the 
organization developed their solutions using tightly knit 
collocated teams.  Over the last several years, however, 
several smaller companies were acquired resulting in 
development capabilities in several geographic locations.  
System 1 was intended to be a platform used for the next 
generation of products across the company including the 
products developed at these disparate sites.  The design 
and implementation for System 1 was staffed with people 
from each of the development sites.  As this was an effort 
of strategic importance with high external visibility, the 
best people from each site were selected to work on 
system 1.   
     There were in total four development sites with two in 
Germany and two in France.  There was a central 
architecture team made up of the most qualified 
representatives from each site, and each site had 
responsibility for the design and development of one or 
more subsystems. 
    The architecture team would meet regularly (as often as 
every week) in various locations for design meetings.  
They were responsible for defining the high level 
architecture.  This included selecting the architectural 
concepts appropriate to achieve the driving requirements, 
allocation of responsibilities to the components, interface 
specification for the primary components, and 
specification of concerns that spanned the individual 
subsystems.   
    The overall project was managed from one of the main 
sites in Germany with the project manager spending much 
of his time traveling to the various sites.  The total 
development effort for version one was around 400 staff 
years implemented in roughly four calendar years.  The 
size of each development site was more or less equal. 

     Issues Experienced:  At the time this report was 
written, two versions of System 1 had been built.  The 
system had been deployed in limited numbers in the field.  
While there were many issues, as is normal with a system 
of this size and complexity (this was an embedded system 
with over 3 million SLOC), some of the issues were not 
expected and had a major impact on the business success 
of the platform.  The system had stability problems.  It 
would “hang” periodically and give the perception of a 
software failure.  In addition the system was not able to 
stay within its memory budget during startup.  

Performance was also a problem (in addition to the 
hanging problem) during startup (i.e. the system was 
unable to bring certain features online within the required 
time during startup). 
     Many of the smaller issues were solved, but the 
memory, performance, and stability issues (or hangs) 
were not so easily solved.  The organization maintained 
the same structure for some time trying to track down and 
deal with these issues.  When this proved to be 
unsuccessful they appointed a performance and memory 
management team to be in charge of this aspect of the 
system.  This team was to manage the resolution of these 
issues with the architects and the involved design and 
development teams. 
     While overall some progress was made, the impact on 
the overall market’s perception of the platform was 
significant.  In order to realize specific product 
instantiations, additional features needed to be integrated 
into the platform. For business reasons they attempted to 
do this development and integration in parallel with the 
resolution of the performance and memory issues, further 
compounding the problems.  These issues were the topic 
of board level discussions across companies and 
ultimately led to key customers switching to competing 
products representing a significant loss of revenue.  

Analysis:  In looking at the issues and the events that 
preceded the issues a couple things became apparent. 

Resolving the performance and memory conflicts was 
a coordination intensive activity:  Only informal 
calculations were used to determine if the prioritization 
scheme would achieve the performance requirements.  
This required extensive testing (and subsequent re-
prioritization) to validate that these latencies could be 
met.  When they were violated, extensive coordination 
between the teams familiar with the code competing for 
CPU time was required.  There was no upfront 
recognition that this was a possibility.  The architects 
assumed that the prioritization rules were adequate to 
allow the teams to work independently.  This was largely 
due to a similar mechanism working for previous 
solutions.  What was not recognized, however, was that 
much tweaking was required in the previous solutions as 
well.  This tweaking didn’t have the same coordination 
impact on the previous development team, however, as 
they were collocated and able to coordinate effectively 
without unduly disrupting the schedule or sacrificing 
quality. 

The organizational structure inhibited coordination 
concerning performance and memory issues:  While the 
architecture team was ultimately responsible for the 
performance and memory characteristics of the system, 
the implication of their decisions (the scheduling policy, 
and resources utilization policy) was that many decisions 
were deferred to the development teams.   
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     The impact of the local decisions was not recognized 
until late in the development lifecycle.  Once it was 
recognized, it was difficult to coordinate as many of the 
teams involved were distributed and only vaguely 
familiar with the activities of the other teams.  After the 
difficulties of version one the organization tried to 
restructure accordingly and created a performance team.  
This performance team was responsible for identifying 
the source of the issues and managing the coordination 
amongst the involved teams to resolve the issues.  This 
also proved to be problematic.  While there was a single 
group that was responsible for the issues, much 
coordination was needed to understand exactly what was 
happening in the system at runtime and how the processes 
and threads were interacting to use memory and CPU 
time.   
     In this project the architecture team was explicitly 
concerned with the ability of the organization to deliver 
the system in a timely manner.  This concern, however, 
only resulted in considering the component framework 
and functional decomposition of the system.  There was 
no understanding of the impact of the performance and 
memory management decisions on the organization until 
it was too late.  Likewise project management only 
became aware of the inadequacy of the existing 
organizational structure for this system once complex 
issues began to surface.  They then tried to reorganize to 
address these issues, but it was too little too late.   

3.2 System 2 

System Goals:  System 2 was a PC based application 
that interacted with networked embedded devices.  The 
primary purpose of the system was to display status of the 
devices on the system (a non-critical function), but there 
were other capabilities that could have safety implications 
under certain situations.  As a result, specific aspects of 
the system had to have high availability.  The 
functionality of the system was not overly complex 
compared to systems built in the past, but the scale of the 
application was larger than the developing company was 
used to for this particular class of system.  The 
development effort was around 300 staff years, about 
twice the size of the next largest effort. 

Unlike system 1, system 2 was a custom application 
being developed for a specific customer.  Again this was 
a highly visible project (visible both within the company 
as well as in the general public) that represented the 
largest such project that this organization had done to date 
with the potential for a much larger order upon successful 
completion.  There were architecturally significant 
requirements that were deemed important including: 

Defined startup times after which all 
functionality must be available 
Failover times 

Availability requirements 
Fault tolerance requirements 
Various failure modes (i.e. a “safe state”) 
Minimize development costs 

     The availability and startup requirements were 
imposed by the customer and to be validated in various 
testing phases.  As this was a fixed price project (with a 
bonus/malice clause) the developing organization had an 
incentive to minimize development costs and schedule. 

System Description: The architecture team for System 
2 also decided to use a component based solution.  They 
focused on defining a set of components with an explicit 
set of responsibilities, interfaces, and behavior.  System 2 
was developed using J2EE technologies.  CBSD was 
selected primarily to reduce development costs.  
     In order to achieve the availability requirements the 
architects made several decisions: 

Decentralized system: In order to minimize 
the impact of failures on various aspects of the 
system, the architects reduced the functionality 
that was managed centrally.  Most of the logic of 
the system was to be replicated on many 
machines to handle activities of a specific 
location.  A protocol was devised so that these 
local machines could continue to operate in the 
event that they lost communication with the 
central system (see figure 1).
Redundant components: The central 
components were developed so they could be 
deployed redundantly.  
Complete backup system: The system was 
intended to have a complete backup system that 
mirrored the functionality and state or the 
primary system.
Watchdogs: In addition there were component 
level watchdogs to monitor the status of 
important components and allow the system to 
attempt restarts at the component level.

Organizational Structure:  For system 2 the customer, 
primary responsibility for system level requirements, and 
system engineers were in the US.  The software architects 
were located in Western Europe and the software 
developers were primarily in Eastern Europe.   
     The groups in the US and Western Europe were in 
different divisions of the same operating company.  Both 
the system and software side, however, had several 
outside consultants on the team.  This included some key 
positions on the software architecture team.  The group in 
Eastern Europe was part of a different operating company 
(but from the same overall organization) as the other 
groups.
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     Overall there was little history working together by the
individual participants on this project.  The two operating
companies involved had collaborated on many past
projects, but the individuals on this particular project had 
not worked together in the past.  Likewise the personnel
from the US and Western Europe had not interacted
together in the past.
     Frequent trips were made by key personnel in all
directions and as the project progressed several of the
software architects were located full time in Eastern
Europe with the software developers and testers.
Software teams were aligned with the various sub-
systems, the UI, the database, and testing.

Figure 1

     Issues: Ultimately the organization was not successful 
in implementing this architecture.  The project was
reorganized and a new architecture was developed. The
issues that led to this failure were primarily realized as
stability issues. The system was never able to become
stable enough to get past system testing.  Many of the
issues that caused the stability problems had their roots in
the complex synchronization mechanisms.

Analysis: Part of the decision to use a decentralized 
solution included decentralized caching of data.  This 
included configuration data as well as application data.
While this improved performance and availability of data
it made synchronizing state across the various elements of
the system quite complicated.  Decisions around state
management were largely deferred to the sub-system
teams.  As each team made local decisions regarding state 
management this was handled inconsistently across the
various sub-systems.
     The decentralized caching of data and state
management within the sub-systems created many
interdependencies across the tasks of the various sub-
system teams.  The overall correct operation of the system
relied on correct and consistent synchronizations
mechanisms which involved many aspects of the system
and was largely impacted by the decisions about state
management and complicated due to the local caching of 
data.

     The organization had significant difficulty recognizing
these issues and working together as a team to solve
them. There was a lot of finger pointing (e.g. “that is
really the responsibility of team A”) amongst teams when 
close cooperation was needed to resolve the issues.
     Mistrust existed amongst the different organizational
entities and as problems emerged various managers
seemed to work hard to deflect blame.  This problem
seemed to be exacerbated by the disparate entities 
involved. With a large number of external consultants,
several divisions, and management chains involved the
individuals had no history of working as a team and had 
different motivations and incentives.
     Looking at these issues with respect to our initial 
argument we see that there were several aspects of the 
architecture that required extensive coordination among
disparate teams, namely how to synchronize state across 
sub-systems.
We also can see that because of the nature of the 
organization (e.g. geographic and organizational
boundaries), the ability of the organization to coordinate 
was impeded.  These issues were not explicitly
recognized and planned for, however.  The project
managers and architects were both diligently performing
their duties and even trying to account for the other’s
concerns, but were unaware of the impact of these
architectural decisions on the organization.

3.3 System 3 

System Goals: The third system was also a platform
effort. This platform allowed for the integration of a suite
of related products to realize functionality needed by the 
target markets.  The products were devices (e.g. sensors,
actuators), embedded controllers, and SCADA systems.
The primary goal of the platform was to enable a
collection of these products to function as a single system
from the end user/customers perspective.  In addition the
domains in which these systems were deployed had
diverse needs with respect to performance, reliability, and
availability as well.  This platform was intended to live
for 10 – 15 years and so had to accommodate future 
customer needs in order to remain viable in the
marketplace.  One such feature introduced by the market
was the need to support versioning of system data.

System description: This system was organized as a 
loosely coupled collection of sub-systems or distinct
applications (depending on your perspective). At runtime
these subsystems operated largely independently (e.g.
deployed on their own hardware).  The interactions
among these systems was built on defined (often 
standards based) protocols.  Complex scheduling policies
across subsystems was not required as most of the
concurrency was within a given system. To
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accommodate the performance needs budgets were 
allocated to each subsystem.  When estimated execution 
times were uncertain prototypes were developed to help
ensure the budgets were realistic.  Data management was 
decentralized.  Each subsystem managed and stored its
own data (see figure 2).

Figure 2 

Organizational Structure: In this project there was an 
overall platform architecture team located in Europe. 
This team was responsible for the definition of any aspect 
of the architecture that required coordination of more than
one of the subsystems.  Each subsystem group was 
organized as an independent project with its own project
manager, architects, developers, testers, and so forth. The
integration of these subsystems, as needed to handle the
total system features, was set up as a project as well with
project managers and testers.  Competing schedules were
managed by the project manager of this project.
     Each of these teams spanned organizational
boundaries.  Geographic boundaries existed both within a
particular project and across projects. There were regular
meetings of management to coordinate priorities across
projects and technical had frequent interactions across 
projects as well.  Several technical teams existed with 
representatives of all of the projects participating (if not
all of the sites). 

Issues: In many ways this was a very successful 
effort.  These subsystems were sold individually and with
great success. Likewise they were integrated and sold as 
a total solution. The issues arose, however, during the
evolution of the system.  There was a request from
marketing to introduce versioning of the data into the
complete system.  All of the individual subsystems had
versioning capabilities, but they were inconsistent and did
not result in a single solution from the customer’s
perspective.  A technical solution was devised for how to
resolve the divergent versioning strategies. The
organization was unable to realize this solution, however.
The reasons reported were the complexities in
coordinating the different groups involved.  The result of 
this difficulty was that the initial solution was discarded
and an alternative was designed with a centralized 
datastore (see figure 3). 

Figure 3 

Analysis: In looking at the details of this situation it
was in some ways different from the previous two.  In 
this case (as in the others) there was a technical decision 
that required coordination amongst teams in order to
realize.  It was also the case in system 3 (as in the others)
that the ability for the teams to coordinate was impeded.
In this case, however, it was the organizational 
boundaries that were the primary contributors to the
coordination impedance. As the subsystem groups were 
organizationally distinct, they had their own management
structure, their own schedules, and their own priorities.
The decision to decentralize the datastores meant that for
the addition of a unified versioning mechanism
coordination across groups was required.  It became too
difficult to synchronize the release schedule in such a way 
that business objectives could be met.
The second design, however, with the centralized
datastore was well aligned with the organization. It did,
however, end up requiring additional coordination in
different areas.  In order to meet particular performance
requirements, for example, now involved the coordination
of many more disparate teams.

4.0 Conclusions 

In each of these three systems we see examples of 
architectural decisions other than invocations across 
modules that create significant dependencies across tasks.
In system 1 it was the scheduling strategy and the strategy
for managing resource consumption, in system 2 it was 
trying to manage state synchronization, and in system 3 it
was trying to synchronize the release schedules to realize 
a particular customer feature. Furthermore the task
interdependencies created by these architectural decisions
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resulted in coordination needs that could not be met by 
the organization.  It was explicitly recognized in all three 
cases that invocations across modules assigned to 
different teams implies coordination among those teams.  
This recognition was not adequate, however, to ensure 
that the architecture was buildable by the organization. 
     We recognize that this need for coordination would 
not be an issue in all cases.  Some organizational 
structures could accommodate these decisions without 
problems.  If for example, there were no organizational 
boundaries across the subsystems in organization 3, it 
likely would have been simpler to manage the release 
schedules.  There would not have been different product 
management teams imposing conflicting priorities on the 
various teams.  Organization one had in fact previously 
been successful at implementing a similar architecture in 
their legacy system.  It was only once they had distributed 
teams that coordination issues arose.  In short it is not the 
architectural mechanisms in isolation that cause a 
problem; it is the combination of these mechanisms with 
particular factors that cause the misalignment. 
     It is this fact which motivates our second point.  It is 
neither the organizational structure nor the architectural 
decisions in isolation that cause a problem, but rather the 
lack of alignment across these areas.  This speaks for the 
need to consider both the organizational situation and the 
architectural mechanisms together.  This is currently an 
issue, however, as there isn’t typically one person that has 
insights into both areas, and there isn’t a common 
understanding of what the relationship between these two 
areas of concern is.  The architect(s) are concerned with 
the technical decisions, the project manager is concerned 
with the organizational factors, and there is inadequate 
recognition of how these two groups need to interface.  
All too often this results in misalignment as we have seen 
in these three cases often having a significant detrimental 
effect on the schedule, quality, or even the likelihood of 
project completion.   Thus we feel it is important to more 
precisely define these areas of connection in order to 
allow for the architectural alignment to be explicitly 
considered early enough in the project that corrective 
action can be taken without undue expense or delay. 

5.0 Future Work 

In order to understand what it will take to align 
organizations and architectures we first need to: 

Understand precisely what architectural 
mechanisms imply the need for coordination 
Understand more about the organizational 
characteristics that impede or support 
coordination 
Understand what the relationship is between the 
particular architectural mechanisms that imply 

coordination and different organizational 
characteristics

         While these three points describe a formidable, 
long-term research agenda, we will start by collecting 
several kinds of data from executing projects.  First we 
need to have data regarding the kinds of technical 
dependencies that exist in the architecture.  We need to 
know about the allocation of tasks to teams, we need to 
have an understanding of the kind of coordination that 
occurred across teams, and we need to have an 
understanding of what the results were (e.g. quality 
issues, successful realization of the solution, delays, and 
so forth).  We can then analyze this data to determine the 
precise nature of the coordination required by varioius 
architectural mechanisms, and which organization factors 
facilitated or inhibited coordination. 
   In the long run the vision is to have some means to be 
able to analyze the coordination capability of a particular 
organization, evaluate the coordination needs of a 
particular design, determine the relative “fit” between the 
two, and have tactics that can be made to the design, the 
organization, or both in the event of significant mismatch. 
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