
Siemens Global Studio Project:  Experiences Adopting an Integrated GSD 
Infrastructure1

 

                                                           
1 We gratefully acknowledge support by the National Science Foundation under Grants No. IIS-0414698 and IIS-
0534656, by the Software Industry Center at Carnegie Mellon University and its sponsors, especially the Alfred P. 
Sloan Foundation, the DoD and Siemens Corporate Research, Inc. 

Mullick, N., Bass, M., El 
Houda, Z., and Paulish, 

D.J. 
Siemens Corporate 

Research, Inc 
Princeton, NJ 
Neel.Mullick, 
Matthew.Bass, 
Daniel.Paulish 
@Siemens.com 

 
 
 
 

Cataldo, M. and Herbsleb, 
J.D. 

Institute for Software 
Research International 

Carnegie Mellon 
University 

Pittsburgh, PA 
Mcataldo,herbsleb@andre

w.cmu.edu 
 

Sangwan, R. 
Penn State University  
Great Valley Campus 

Malvern, PA 
rsangwan@psu.edu 

Bass, L. 
Software Engineering 

Institute 
Carnegie Mellon 

University 
Pittsburgh, PA 

ljb@sei.cmu.edu 
 
 
 
 
 
 
 

Abstract 
 

Environments and processes in typical software 
development are not fully adapted to the needs of 
global software development (GSD).  In particular, 
they do not have all of the capabilities necessary for 
cross-site collaboration.  While research literature is 
rich with examples of individual practices and tools 
that an be used in this setting, there is a lack of 
examples illustrating how these tools and processes 
can be used in combination.  We have augmented a set 
of tools and processes for GSD and applied them to an 
experimental project called the Global Studio Project 
(GSP).  This paper describes the tools and processes 
developed, and insights gained from applying them to 
the GSP. 
 
1. Introduction 
 

As researchers and practitioners gain more 
experience with GSD, we are beginning to move from 
individual tools and practices that help with particular 
aspects of GSD toward integrated solutions that 
attempt to cover the full range of needs of distributed 
projects.  The fundamental GSD problem, of course, is 
that co-located projects make very effective use of 
coordination mechanisms and communication channels 
that are not available or not as effective for distributed 
teams (e.g. [4], [3]).  The fact that these mechanisms 
operate so naturally and invisibly has made adjusting 
to GSD all the harder, since we tend to underestimate 
the difficulties and to be unsure about what additional 
capabilities GSD projects require.  In addition, 
differences in language, culture, and physical context 
make it much more difficult to establish common 
ground to ensure that communications carry the same 
meaning for all parties [1][11]. 

 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



While it is clearly an oversimplification, much of 
what has been learned about GSD can be summarized 
in the following themes: 
 

Decoupling the work.  Interdependent tasks require 
some type of coordination mechanism and, potentially, 
extensive communication exchanges [10]. Modularity 
plays an important role in software design, in general, 
and it is particularly vital for GSD [5].  The drastically 
attenuated communication across sites makes it 
difficult to manage dependencies among developers 
working on the same modules.   

 
The importance of unplanned and informal 

communication.  Informal communication pays a 
major role in project coordination, particularly where 
the project is uncertain [9].  Since informal 
communication is nearly absent across distributed 
sites, uncertain projects are likely to suffer from lack 
of communication.   
 

Project management must be both more flexible and 
more rigid.  Different sites are going to operate 
somewhat differently because of differences in history, 
culture, expertise, and project management must 
accommodate such differences.  It is much easier, 
however, to be surprised by delays and technical 
setbacks in a GSD environment.   

 
The lack of contextual information causes 

misunderstandings and confusion.  Different sites 
operate within different cultural norms, 
communication styles, different tempos, and are 
subject to different issues and priorities [1][8].  The 
lack of information about the context in which other 
developers are immersed leads to frequent 
misinterpretations [2]. This lack of mutual 
understanding leads to conflict as when 
unresponsiveness is interpreted as irresponsibility 
rather than a consequence of time pressure [7].       

 
There are many practices and tools that could be 

used to address these concerns, and the research 
literature is rich with descriptions of individual tools 
that have been developed and used in academic and 
industrial settings.  While these studies are quite 
valuable in advancing our state of knowledge, looking 
at tools and practices individually does not tell us 
much about what happens when we use them in 
combination on distributed projects.  We have much to 
learn about conflicts and complementarities among 
them, and to understand what kinds of adjustments it 
takes to attempt to put an end-to-end solution into 
place.  One of the reasons for the absence of research 

on total solutions is, of course, that it is very risky to 
introduce simultaneously many different changes in 
practices and tools in a real project.   

 
One alternative to introducing wholesale changes 

into an actual project is to use surrogate projects, such 
as simulated with student teams.  This paper reports 
initial results from a relatively large-scale student 
project, in which multiple teams from a number of 
universities on four continents collaborated on year-
long projects in order to create a laboratory in which 
the effects of multiple GSD practices and strategies 
could be studied.   
 
 
2. GSP Overview 
 

The Global Studio Project (GSP) is a project that 
simulates a real world geographically distributed 
project by using student teams to develop software.  
The GSP was initiated by Siemens Corporate Research 
(SCR) in order to develop a better understanding of the 
issues associated with developing software using 
geographically distributed teams. 

   
In the GSP there is a central team located at SCR 

that is responsible for the requirements, software 
architecture and some aspects of design, system test, 
integration, project management and defining the 
overarching processes.  The remote teams are 
responsible for design, development and unit tests for 
particular code modules or sub-systems defined by the 
central team. The interactions between the central and 
each remote team are managed by an individual on the 
central team that we call a Supplier Manager. There is 
a Supplier Manager for each remote team. 

 
Table 1: School Participants of the GSP 

 
 School Country Dates Involvement 
   Start End 
Year 1 CMU USA 09/2004 08/2005 
 MU USA 09/2004 04/2005 
 UL Ireland 11/2004 06/2005 
 TUM Germany 11/2004 06/2005 
 IIITB India 11/2004 06/2005 
Year 2 CMU USA 09/2005 03/2006 
 MU USA 09/2005 04/2006 
 PUCRS Brazil 08/2005 07/2006 
 UL Ireland 11/2005 06/2006 
 TUM Germany 11/2005 06/2006 
 IIITB India 01/2006 06/2006 

 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



The GSP is executed in distinct one year increments 
(corresponding to the academic year) and is currently 
in its second year.  The remote teams are student teams 
operating in academic environments at universities 
around the world. These students are pursuing their 
masters or diplomas (equivalent to masters) in software 
engineering or associated fields. The programs, 
universities represented and the approximate time 
frames of their engagement with the GSP are described 
in Table 1.  
 

The system under development in the GSP is what 
we call the MSLite system.  MSLite is to be a unified 
management station for building automation systems 
such as heating ventilation and air conditioning 
(HVAC), access control, and lighting that will allow a 
facility manager to operate such systems. The 
summary of the high level functional requirements of 
the MSLite system are: 

 
• Manage the field objects (objects in the building 

automation domain, e.g. HVAC sensors) which 
are represented in the FSS. 

• Issue commands to the field objects in the FSS to 
change values of their properties. 

• Define logical conditions based on property values 
of field objects that trigger reactions and issue 
commands to field objects. 

• Define alarm conditions akin to the logical 
conditions that when met, trigger alarms notifying 
appropriate users.  

 
3. GSP Development Effort 
 

The GSP was split into two distinct years with a 
particular set of student teams being involved for one 
year.  For the second year the infrastructure and 
processes were refined to address the issues 
experienced and lessons learned during the first year.   

 
At the time this report was written the GSP project 

had completed 2/3 of the second year.  In this section 
we will describe the design of the project in the first 
year, how it was intended to deal with the perceived 
issues associated with GSD, the results, the redesign 
for the second year, and where available further 
results.  These findings have been separated into 
themes that ended up being central in this project in 
one way or another.  

 
3.1 Centralized Management 

 
During the planning process for the GSP there was 

much discussion about how to structure the overall 
management of the project and how to conduct the 
early lifecycle activities.  In the end our strategy was 
governed by past experience [4] and the constraints of 
the environment.  The tenets of our approach were as 
follows: 

 
• High level process defined and enforced centrally, 

but the detailed development processes were the 
responsibility of the remote teams 

• Items of global concern (e.g. system requirements, 
architecture, system testing) would be the 
responsibility of a central team, local concerns 
(e.g. development, detailed design, unit testing) 
would be the responsibility of the remote teams 

• The system would be built using iterative and 
incremental development 

• Coordination would be managed centrally 
 

How these tenets were realized changed from year 1 
to year 2, however.  We will discuss the details of the 
approaches below. 
 
3.1.1 Year 1.  The development for the first year was 
to occur in an iterative and incremental fashion. The 
central team was to deliver a set of artifacts (called a 
work packages) at the beginning of each iteration.  The 
idea was that this work package would contain all of 
the artifacts necessary for the remote teams to 
complete their assigned tasks in that iteration.  
 

There was a person that we called a supplier 
manager designated to manage each remote team.  
Because of the overhead associated with managing a 
remote team it wasn’t possible to have a single person 
manage all the teams.  Each supplier manager was 
responsible for communicating expected tasks, 
monitoring progress, being the first point of contact for 
questions, and facilitating the communication between 
the remote team and other members of the project as 
needed. It was planned that the supplier managers 
would have a kick-off meeting via teleconference with 
their remote teams at the beginning of each iteration.  
Additional meetings would be held as needed. 

 
Remote teams were to deliver code, design artifacts, 

test cases, and associated documentation at the end of 
each iteration.  They were to make the delivery into a 
central version control system.  The central team 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



would then integrate the deliveries and conduct system 
tests that corresponded to the features that were to be 
delivered in the previous iteration.  Issues that were 
discovered were to be assigned to the team that owned 
the code that was perceived to be responsible for the 
issue.  Responsibility could be reassigned if required 
by the central team. 

 
Coordination across teams was to be managed by 

the central team.  If a remote team needed to 
coordinate with another remote team they were first to 
inform their supplier manager.  The supplier manager 
would then let them know if it was appropriate to 
contact the remote team and be party to all of the 
communication.   

 
There were many issues with the central 

management of the first year.  Before teams were able 
to become fully productive several of them became 
quite frustrated with the project and became 
increasingly difficult to interact with.  In two instances 
onsite visits were required and the academic advisors 
were brought into the discussions.  The first year of the 
project was eventually stopped three months early as it 
was obvious that the current processes were not 
adequate and we wanted to use that time to re-plan for 
the second year.  We summarize the related issues 
below that led to these conditions. 
 

Unclear process communication.  The process was 
communicated to the teams individually either face to 
face, via teleconference, or via electronic media (email 
or electronic documents).  It took much longer than 
expected, however, for the remote teams to understand 
the processes, what was expected of them, how they 
make deliveries, the meaning of the work packages, 
and so forth.  In most cases confusion and re-
explanations of various aspects of the process were 
required for the first several months of involvement. 

 
Inconsistent communications from the supplier 

managers.  The internal processes and infrastructure 
was not adequate to ensure that the supplier managers 
provided consistent communications across teams.  
The supplier managers would respond to emails and 
questions as they saw fit.  It was not uncommon to 
later discover that another supplier manger responded 
to a similar question from another team differently.  
These inconsistencies resulted in the central team 
seemingly “changing their mind” and contributing to 
the perception  of disorganization.   
 

It was also the case that the coordination processes 
ended up being different for the various teams.  For 

example the IIITB team in India rarely participated in 
teleconferences.  They were difficult to schedule based 
on the time differences, the student team had difficulty 
securing a location where they could participate in 
such a teleconference, and it was felt that for either 
language or cultural reasons the student team had a 
strong bias towards written communications.   

 
CM and infrastructure problems.  There were 

several issues associated with the CM process and 
infrastructure.  Some of the teams were using the 
central version control system as a working repository 
during the iterations.  Others had their own local 
repository with a structure that mirrored the central 
one.  There was no branching of the main trunk for the 
remote teams.  We had several issues with this such as: 

 
• Broken builds when teams checked in interim 

code artifacts 
• Hierarchy of the main repository changing making 

it difficult to merge the changes of the local team 
• Remote Teams reporting bugs in other teams code 

when in fact the updated code hadn’t been 
checked in yet.  

 
3.1.2 Year 2.  During the second year several tactics 
were adopted to address the issues mentioned above.  
In this section we will describe these tactics and where 
available discuss the results. 
 

 
Fig. 2 – The main page of the MSLite wiki 

 
Consistent communication with the remote teams.  

The central team put processes and infrastructure in 
place to help ensure that the communications with the 
individual teams were consistent across teams.  A 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



central infrastructure was created to provide a single 
window into the project (see figure 2).  MediaWiki 
was selected as the software to support the main entry 
point to the project.  All project related artifacts and 
process description were made available via this 
infrastructure.  Training videos were developed and 
made available on the wiki as well.   
 

When a team joined the GSP they first had a kick-
off meeting with their supplier manager.  The supplier 
manager followed a detailed script for the meeting.  
The teams were then required to watch the training 
videos and conduct a series of exercises to help ensure 
that they understood the infrastructure and knew how 
to use it.   

 
All of the teams had weekly status meetings with 

their supplier managers.  These meetings were 
conducted according to a structured format.  All 
questions and issues posed by the remote teams were 
required to be submitted to the central team prior to the 
meeting.  This allowed the central team to formulate 
consistent answers and not reply on the fly. 

 
These changes were largely successful.  It was the 

case that all teams became productive within one 
month and no team required retraining at any point 
unless there was a major change to the infrastructure or 
the process. 

 
Transparency.  It was mentioned that during the 

first year the remote teams were frustrated by the 
personal impact of design changes and re-planning by 
the central team.  It was felt that much of this 
frustration came from the remote team not 
understanding the context leading up to a decision.  If 
the remote team was aware of the issues and party to 
the decision they would (perhaps) see that the best 
option for the project overall was to proceed in a way 
that may burden a limited number of teams.  In order 
to promote this sense of team, the central team worked 
to make the entire project transparent and accessible to 
all.  Part of this involved the infrastructure mentioned 
above.  In addition a change control board (CCB) and 
change control process was defined.  The CCB 
included the team leads from the remote teams.  This 
allowed them to understand the rationale for changes 
and take ownership of the decision to proceed despite 
potentially adverse impacts to their team. 

 
Mandatory central version control system.  

Subversion was selected as the version control system 
to be used by all.  A continuous test and build process 
was defined and supported by CruiseControl (a test 

and build environment).  The infrastructure would 
automatically build the system and execute test cases 
when code was submitted.  The results of the build and 
tests were emailed to the central team as well as the 
team that submitted the code.  If the build was broken 
the team was given a short amount of time (on the 
order of a ½ hour) to fix the build.  If the build was not 
fixed their submission was backed out and the code 
base went back to that of the previous successful build.  
This would allow for all teams to work from a single 
code base without impeding the progress of any of the 
teams.  If the build was allowed to remain broken for 
an extended period of time, it would potentially hold 
up the progress of all teams. Issues from the test cases 
were reported at the end of an iteration (we will talk 
more about this in the next section). 
 
3.2 Iterative Development 
 

We anticipated having issues estimating effort, 
monitoring progress, managing quality, and re-
planning.  In order to deal with this uncertainty we 
chose to adopt an iterative and incremental approach.  
We borrowed some of the practices of SCRUM [12] 
such as short iteration cycles, the notion of functioning 
deliveries, and so forth.  Below we will look at the way 
the iterative aspects of the project were realized in the 
two years and the results. 
 
3.2.1 Year 1.  In the first year the development was to 
be done in a series of short (4 – 6 weeks each) 
iterations called sprints [12].  At the end of these 
sprints each team would deliver a portion of their 
module.  These modules were to then be integrated by 
the central team to realize a predefined portion of the 
externally visible functionality.  The central team 
would integrate and test the system assigning issues 
back to the team that owned the module likely 
responsible for any problems.   
 

The development was to progress incrementally as 
well.  The high level functional requirements were to 
be defined and prioritized, the initial functional 
decomposition of the system was to be done, sub-
systems defined, and high-level planning done.  The 
requirements and architecture would then be refined as 
needed to achieve the functionality defined for the 
upcoming sprint.  The detailed tasks would be 
allocated to the teams, the work executed, deliveries 
made, and integration and system test would occur in 
the subsequent sprint. 

 
The requirements and the design were largely done 

in UML.  The tasks were derived from mapping the 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



features planned for a given sprint onto the 
architecture.  Responsibilities within the impacted 
modules were defined and assigned to the teams that 
were responsible for the given module.   

 
The project plan was documented in Microsoft 

Project and had the features as milestones.  The 
features were broken down into responsibilities that 
corresponded to those identified in the process 
described above.  The responsibilities were allocated to 
the appropriate team on the project plan.   

 
All of these artifacts were emailed as a work 

package to the teams at the beginning of each sprint.  
In addition there was a kick-off meeting with the 
supplier manager responsible for the team and the 
remote team.  This was typically held via 
teleconference.  Subsequent meetings were scheduled 
on an as needed basis.  Typically questions were posed 
via email. 

 
As mentioned in the last section, the planning and 

execution of the first year of the project did not run 
smoothly.  Below we summarize the issues as they 
relate to the iterative nature of the project. 

 
Frequent re-planning required.  From the 

beginning of the first iteration unanticipated issues 
began to surface.  Teams frequently required additional 
information related to a task that hadn’t been 
completed yet.  In some cases the dependencies were 
things like: team A discovered that they required the 
definition of a particular portion of the object model 
(that was to be defined in an upcoming iteration by 
team B) in order to complete their tasks, or team C 
realized they needed previously unspecified services 
from another portion of the system outside their 
control.  

 
When this would occur the team would be unable to 

move forward.  The central team wasn’t sure how to 
respond to these issues.  They didn’t want to have 
teams sitting idle, but were also unable to adequately 
provide answers to the questions.  The central team 
acted in one of two ways; They made some 
assumptions, gave the team an answer based on those 
assumptions and told them to continue assuming that 
was correct, or they reassigned the team to another 
task.  Both of these options often did not work out 
well.  The alternate task was often busy work, and the 
assumptions were often not totally correct. 

 
Interdependence of tasks not well understood.   

Related to the first item, the interdependent nature of 

the assigned tasks wasn’t adequately understood. Some 
of this can be attributed to ambiguities in the 
architecture.  While an architecture is often not totally 
stable until the system is retired, in this case the work 
was distributed before the architecture was stable 
enough.  Ambiguities resulted in dependencies to be 
discovered during implementation, and because of the 
distributed nature of these teams the ambiguities were 
difficult to rectify and threw the work plan into 
disarray.   

 
Additionally the temporal dependencies were not 

adequately investigated.  In other words there was not 
an adequate understanding of what the prerequisite 
work tasks were in order to complete a given set of 
functionality during an iteration.  Functionality was 
assigned to an iteration by priority rather than ordering 
them according the identified temporal dependencies. 

 
Work assignments not easily understood.  The 

teams had trouble understanding what was expected of 
them.  They had trouble making sense of the artifacts 
(project plan, architecture, and requirements) supplied 
in the work packages and teleconferences were often 
not adequate to clarify questions.   

 
Integration tests weren’t easy to execute.  The 

original test plan mirrored the project plan.  The plan 
for integration and system tests was derived from the 
requirements associated with the features planned for a 
given integration.  Because of the ad-hoc re-planning 
that occurred in the middle of iterations, however, the 
actual deliveries often didn’t match the planned 
deliveries.  The result was that it wasn’t clear what the 
central team needed to integrate and test.  The result 
was often untested and poor quality deliveries. 
 
3.2.2 Year 2.  While we continued to have an iterative 
and incremental approach in year 2, we changed many 
things as a result of the issues experienced in the first 
year.  While we still believed iterative development 
would help with many concerns, we felt that more 
upfront work was required prior to engaging the 
remote teams and beginning the iterations.  In addition 
more structure and better use of tools was required to 
support the iterative processes.  In this section we will 
describe these changes. 
 

More upfront effort.  While it was still believed that 
some aspects of the requirements and design could 
happen iteratively, it was also now believed that a 
larger percentage of the efforts would be needed prior 
to engaging the remote teams.  In addition, much more 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



effort was focused on understanding and planning for 
the interdependent nature of the tasks. 

 
In addition to describing and modeling the 

requirements, UI mockups were created.  These 
mockups helped to convey the meaning of the 
requirement to the remote team.  They also helped to 
identify issues with respect to technical feasibility 
early.  In at least one case a remote team raised issues 
with respect to the chosen technology based on 
viewing the UI mockup (e.g. AJAX doesn’t support 
the mechanisms needed to provide the views in the 
way specified in the requirements and made evident by 
the mockup).  This allowed adjustments to be made to 
the requirements prior to the sprint in which this 
functionality was to be implemented. 

 

Fig. 4 – Functional dependency diagram 
 

For the second year the central team worked much 
harder to understand the nature of the 
interdependencies in the architecture.  Particular 
attention was paid to the temporal dependencies (i.e. 
which tasks needed to be completed first).  In order to 
understand these dependencies, two views of the 
system were created.  One view highlighted the 
functional dependencies (see figure 4).  This view 
showed the dependency between the functions of the 
system.  These functions were then allocated to 
iterations. 
 

In addition to understanding the functional 
dependencies the central team wanted to understand 
the dependencies among the modules required to 
implement these functions.  Another view was created 

to highlight this.  Each iteration from the functional 
dependency diagram was mapped to a modular view of 
the system.  The modules required to fulfill the 
iteration were color coded according to the iteration.  
This highlighted things such as dependencies on the 
data model which wouldn’t be instantly obvious from 
other views such as the sequence diagrams (and caused 
issues in the first iteration). 
 

Additional views of the system were developed to 
help with planning such as a technology view which 
identified the technologies required for any given 
subsystem.  The idea was to limit the number of 
technologies that each team needed to learn in order to 
implement their modules.  Additionally prototypes 
were done by the central team to help ensure that the 
architecture was understood and stable prior to 
distribution. 
 

Improved tool support.  As previously mentioned 
the infrastructure was changed drastically for the 
second year.  Much of the new infrastructure was 
modeled on that used by the open source community 
(e.g. the Apache projects).  This infrastructure became 
integral for communicating the requirements, design, 
and plan.  “Work packages” were done away with and 
instead all information was posted on the Wiki.  In 
addition to the modeled requirements and associated 
textual descriptions all of the requirements were listed 
in a “traceability matrix”.  This matrix had links to the 
high level requirement, the associated use cases, any 
relevant sequence diagrams, the associated test cases, 
any UI mockups, and the task on the task plan.  The 
numbering system indicated the iteration, the 
responsible team, and an id for the requirement.   

 
The work plan was generated on the Wiki itself.  

For each iteration it contained the high level goals, the 
use cases, the development focus for each team, the 
impacted modules, components, and interfaces.  This 
allowed for all associated information to be referenced 
in a single place.  After the first iteration no further 
explanation was required to any of the teams, so this 
mechanism seemed to be much improved. 

 
3.3 Information and Awareness 
  

One governing principle for this project was that we 
wanted to minimize the need for cross team 
communication.  It was recognized that it was 
impossible to eliminate the need entirely, but the 
central team wanted to manage all cross team 
communication.  The rationale for this was that 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



decisions made between two teams may have a wider 
impact and the central team wanted to be aware of 
these communications and ensure that the overall goals 
of the project were considered. In this section we will 
talk about our initial ideas in this area and how they 
evolved. 
 
3.3.1 Year 1.  In the first year we felt that the primary 
vehicle for coordinating was going to be the 
requirements, architecture, and the project plan.  We 
distributed what we called “work packages” for each 
sprint.  The work packages contained the updated 
architecture, the associated requirements and the 
project plan along with task assignments for the 
upcoming sprint.  It was expected that this along with a 
kick-off teleconference with the supplier manager 
would be adequate for the teams to understand what 
was expected of them.  In addition we set up email 
aliases for the team to use to communicate with the 
central team.  If there were no requests from the 
remote teams during the sprint they were left alone to 
complete their tasks. 
 

The issues associated with this approach have been 
sufficiently covered in the previous sections.  Suffice 
to say that the processes and infrastructure used to 
augment the awareness of the remote teams in the first 
year were far from adequate.  
 
3.3.2 Year 2.  As already mentioned a central 
infrastructure was created so that all participants would 
have a single window into all aspects of the project.  
Much thought went into the best way to structure the 
processes and infrastructure to support awareness 
within the remote teams.  Many related aspects have 
been discussed already (e.g. training, transparency in 
the project, and the integrated infrastructure).  In this 
section we will talk about additional elements of the 
processes and infrastructure that have not yet been 
mentioned. 
 

Ensuring a consistent understanding.  In the first 
year there were problems with the teams adequately 
understanding the directions and clarifications of the 
central team.  While some of these problems were 
immediately addressed by new structure of the project, 
some problems lingered.  Early in the execution of the 
second year the central team realized that they were 
having a tough time gauging the level of understanding 
of the remote teams during teleconference meetings.  
This realization came only after reviewing artifacts 
delivered by the remote team and conducting end of 
sprint post-mortems. 

 

To address this issue the central team mandated the 
posting of meeting minutes on the wiki.  In the meeting 
minutes the remote teams were required to summarize 
in their own words both the questions asked and the 
answers given.  This allowed the central team to 
review the contents of the minutes and further gauge 
the level of understanding. 

 
Consistent communications.  In addition to 

previously mentioned actions to support consistent 
communications with all the remote teams the central 
team adopted a practice of answering all emailed 
questions via a discussion forum.  Initially the central 
team would directly answer all emailed questions via 
email.  The central team, however, found that they 
were spending significant time answering the same 
questions from different teams.  In order to reduce the 
overhead on the central team and to ensure consistent 
answers, the central team set up a discussion forum.  In 
this forum they created topics with threaded 
discussions.  Whenever a new question was posed the 
central team would post the question and answer in the 
discussion forum.  Repeat questions would be referred 
to this forum.  Eventually remote teams got trained to 
look there first and to begin to use this as a means for 
asking questions and communicating across teams. 

 
Universal participation.  With some of the remote 

teams there was obvious participation from only one or 
two people.  At first the central team assumed that this 
was because these were the people that were most 
comfortable in English, but later suspected that these 
were the only people who were actively contributing to 
the project.  To deal with this situation the central team 
required that each team member fill one of the required 
roles and that only that person respond to questions 
regarding topic relevant to their role.  This improved 
the participation of all of the team members.  It is 
difficult to know the result in terms of their 
contributions (we plan to check the repository logs), 
but the central subsequently felt more comfortable with 
the overall participation. 

 
3.4 Formality of the Specifications 
 

Initially the planners of this project had the idea that 
the more formal the specifications were the less the 
remote teams would need to communicate with either 
the central team or the remote teams.  In this section 
we will talk about the formal aspects of the 
specifications in year one and year two along with our 
findings.  
   

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



3.4.1 Year 1.  Much of the effort making more 
“formal” specifications went into the requirements.  
The requirements were modeled in UML as an acyclic 
directed graph (i.e. a hierarchy) with the higher level 
nodes being abstract features and the leaf nodes being 
the concrete detailed use cases.  The idea was that by 
describing the requirements in this way we reduce the 
“gap” between the requirements and the design (in 
other words the process of going from the 
requirements to the design is much more mechanized) 
and thus reduce ambiguity.  The design (also done in 
UML) would then offer external interfaces that 
corresponded directly with the business services 
detailed in the requirements. 
 

As was mentioned several times already this didn’t 
work out.  While specifying the requirements in this 
way do make them more readable by a machine (it is 
possible to automate certain activities), they are not 
intuitive particularly to people who didn’t develop the 
model and are not familiar with the domain.  The 
remote teams were not able to look at the requirements 
model and easily develop an understanding of what the 
system was to do and how this related to their 
activities. 

 
Additionally, this view of the system focused 

primarily on the external aspects of the system.  While 
we did develop an architecture that described the 
internal aspects of the system, it was not sufficient to 
understand all that we needed to know about the 
interdependent nature of the tasks as well as to convey 
the aspects that we did understand to the remote teams. 
 
3.4.2 Year 2.  In the second year we didn’t place as 
much effort on “formal” specifications.  The 
requirements were primarily text based requirements.  
While the architecture was much more detailed it was 
not “formal” rather it tried to be intuitive.  Instead 
much effort was placed on trying to formalize the 
processes that surrounded the artifacts.  In other words 
we tried to structure and convey how the remote teams 
would take the artifacts provided and use them to 
extract the needed information.   
 

This proved to be much more successful.  The 
teams were able to use the artifacts as intended.  There 
were some areas where the specifications were 
ambiguous and issues continued to arise, however.  
We didn’t for example specify pre and post conditions.  
This led to conflicting assumptions in at least one case 
and eventually resulted in rework.  Likewise, as 
previously mentioned, teams initially implemented 

exactly what was written even when it clearly didn’t 
make sense.   
 
4. Conclusions 
 

With the benefit of hindsight, it seems obvious why 
the practices employed in the GSP during the first year 
weren’t successful.  At the time, however, they seemed 
reasonable.  We had augmented practices that had been 
successfully employed in collocated projects.  We 
underestimated, however, the extent to which ad-hoc 
interactions can fill the gaps and resolve the conflicts 
left by ambiguous specifications, misunderstandings, 
and poor planning. 

 
In the second year we did a much better job 

accounting for these issues.  While the project is not 
yet over, the outcome to date has been largely 
successful.  At the time of this writing we have over 
15KLOC of tested functioning code realizing much of 
the planned functionality which is more than three 
times the output of the entire first year.   

 
The improvement in the second year can largely be 

attributed to an increased recognition of the areas 
likely to raise questions.  We put mechanisms in place 
to either eliminate the source of question before it 
arose (e.g. more stable specifications, increased 
training, and more visibility) or by putting measures in 
place to recognize earlier that a question or issue exists 
(e.g. validating understanding, implementing an 
inclusive CCB, and assigning roles and requiring 
participation from all).   

This is not the end all and be all, however.  While 
we can work to minimize the number of issues and 
questions, we cannot possibly eliminate them.  We 
continued to spend more effort and time doing things 
like trying to track down the responsible party for an 
identified bug, re-planning in the event that 
development doesn’t progress exactly as planned, and 
so forth.  Things that, in a collocated environment, 
could be addressed by getting all concerned together in 
one room take much longer because of delay 
introduced by time zone changes, lack of awareness of 
what remote individuals are doing, and delayed 
recognition of the problem. 

 
It is also unclear how the techniques used in the 

GSP context would scale for an industrial sized 
project.  The scope and complexity for the MSLite 
system is clearly a fraction of what it would be for 
many commercial applications.  There will likely be 
some issues with the infrastructure and processes when 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



trying to deal with hundreds or thousands of 
requirements, understanding the needs of an embedded 
real time system, or complying with the constraints 
imposed by organizational processes. 

 
6. Next Steps 
 

Over the next year we plan to further this work in a 
couple of ways.  First we want to further analyze the 
data collected from the GSP.  We have been collecting 
social network data as well as the logs for all of the 
infrastructural elements and would like to analyze the 
data to better understand how the remote teams 
coordinated via the infrastructure to complete their 
work.  

 
In addition we want to take a look at other projects 

that have more complex architectural concerns such as 
real time performance needs, fault tolerant concerns, or 
memory constraints to better understand the role that 
these aspects of the architecture play in coordination.  
In particular, we want to be able to predict, from the 
architecture documentation, how best to support 
coordination between teams that design and construct 
different components. 
 
6. References 
 

[1] Armstrong, D. J., P. Cole. 2002. Managing 
distances and differences in geographically 
distributed work groups. P. J. Hinds, S. Kiesler, 
editors. Distributed Work. MIT Press, Cambridge, 
MA, 2002, pp. 167–186. 

 
[2] Cramton, C.D. The mutual knowledge problem and 

its consequences for dispersed collaboration. 
Organization Science, 12, 3 (May-June), 2001, pp. 
346-371. 

 
[3] Damian, D.E. and Zowghi, D. An insight into the 

interplay between culture, conflict and distance in 
globally distributed requirements negotiations. In 
Proceedings of the 36th Hawaii International 
Conference on System Sciences (HICSS’03), 2003.  

 
[4] Herbsleb, J.D., Paulish, D.J., and Bass, M. Global 

software development at Siemens: experience from 
nine projects. In Proceedings of the International 
Conference in Software Engineering (ICSE’05), 
May 15–21, 2005, St. Louis, Missouri, pp. 524-
533. 

 
[5] Herbsleb, J.D. and Grinter, R.E. Architectures, 

Coordination and Distance: Conway’s Law and 
Beyond. IEEE Software, Sep-Oct, 1999, pp. 63-70. 

 

[6] Herbsleb, J.D. and Mockus, A., An Empirical 
Study of Speed and Communication in Globally-
Distributed Software Development. IEEE 
Transactions on Software Engineering, 29, 3 
(2003), pp. 1-14. 

 
[7] Hinds, P.J. and Bailey, D.E. Out of sight, out of 

sync: understanding conflict in distributed teams. 
Organization Science, 16, 6 (Nov.-Dec.), 2003, pp. 
615-632. 

 
[8] Kiesler, S. and Cummings, J.N. What do we know 

about proximity and distance in work groups? A 
legacy of research. P. J. Hinds, S. Kiesler, editors. 
Distributed Work. MIT Press, Cambridge, MA, 
2002, pp. 57–80. 

 
[9] Kraut, R.E. and Streeter L.A. Coordination in 

Software Development. Comm. ACM, 38, 3 (Mar. 
1995), pp. 69-81. 

 
[10] Malone, T.W. and Crowston, K. The 

interdisciplinary study of coordination. ACM 
Computing Surveys, 26, 1 (March), 1994, pp. 87-
119. 

 
[11] Olson, G.M. and Olson, J.S., Distance Matters. 

Human-Computer Interaction, 15, 2 & 3 (2000), 
pp. 139-178. 

 
[12] Schwaber, K. and Beedle, M., Agile Software 

Development with Scrum, 1st Edition, Prentice Hall 
PTR, Upper Saddle River, New Jersey, USA, 2001. 

 
IEEE International Conference on Global Software Engineering (ICGSE'06)
0-7695-2663-2/06 $20.00  © 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


