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The world we live in is a complex socio-technical system.  Although social, organizational
and policy analysts have long recognized that groups, organizations, institutions and the
societies in which they are embedded are complex systems; it is only recently that we have
had the tools for systematically thinking about, representing, modelling and analyzing
these systems. These tools include multi-agent computer models and the body of
statistical tools and measures in social networks. 

This paper uses social network analysis and multi-agent models to discuss how to
destabilize networks.  In addition, we illustrate the potential difficulty in destabilizing
networks that are large, distributed, and composed of individuals linked on a number of
socio-demographic dimensions.  The specific results herein are generated, and our ability
to think through such systems is enhanced, by using a multi-agent network approach to
complex systems.  Such an illustration is particularly salient in light of the tragic events
of September 11, 2001.

WHAT CAN OUR TOOLS DO?

There  are a number of ways in which our tools, both classical social network techniques and the
combination of networks and m ulti-agent systems, can help us understand network destabilization.
Before describing these, an im portant word  of caution is needed .  Network tools are clearly not a
panacea and it is important that as a community we do not oversell these tools.  That being said, there
are at least two fundam ental ways in which network statistics and measures can be brought to bear to
address issues at the heart of destabilizing networks.
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Location of critical individuals, groups, technologies
Given any network, such as a comm unication network, or alliance structure, or monetary flow, wh ere
the nodes are individuals, groups, computers, etc., a number of network measures such as centrality
or cut-points can be used to locate critical nodes.  Additional measures based on an information
processing view of organizations also exist for locating critical employees, redundancy, and potential
weak points within groups and organizations.  Many of the traditional social network measures and
the information processing netwo rk measures are em bedded within T hreatFinder (C arley, 2000).
ThreatFinder is a computer program that uses a combination of network analysis and multi-agent
modelling to determining the potential information security risk from personnel that an organization
faces due to its architecture.  The degree, type, and location of possible threats, such as  critical em-
ployees and lack of redundancy are assessed. These “location” techniques are useful within companies
to help ensure information security and are useful within and among groups and organ izations in
mitigating the effectiveness of networks.  For example, individuals or groups with the following
characteristics can be identified:

1. An individual or group where rem oval would alter the network significantly; e.g., by making it less
able to adapt, by reducing performance, or by inhibiting the flow of information.  Illustrative nodes
are those high exceptionally high in centrality (B onacich, 1987) or high in stru ctural holes (Burt,
1992).

2. An individual or group that is un likely to act even if given alterna tive information.  This can be
found as an individual high in centrality and Simmelian ties (Krackhardt, 1999).

3. An individual or group th at if given new information can propagate  it rapid ly.  Such individuals
may be seen as  gossips, inno vators, or early ad opters (Rogers and Sh oem aker, 1971).  Possible
indicators are high degree centrality or high structural holes.

4. An individual or group that has relatively more power and can be a possible source of trouble,
potential dissidents, or potential innovators.  Individuals with relatively more power may be high
in centrality (Bonacich, 1987; Brass, 1991; Brass and Burkhardt, 1992).  Possible innovators may
be those who are isolates or those who have moved about so m uch th at they have broad and
distributed know ledge and  contacts. 

5. An individual or group where movement to a competing group or organization would ensure that
the competing unit would learn all the core or critical information in the original group or organi-
zation (inevitable disclosure) (Carley, 2000).

6. An individual, group, or resource that provides redundancy in the network (Carley and Ren,
2001).  M easures of redundan cy are  available in  ThreatFinder (C arley, 2000).  

For the measures discussed above most can be calculated using  UCINET3 or  the meta-network R-
package package4.

Pattern location
Over the past few years, major advances have been made in graph level analysis. These techniques
include the P* family of tools, network level metrics (such as group and graph clustering algorithms
using distance metrics such as the Hamm ing distance).  These pattern location techniques can be used
on any data that can be represented as graphs; such as, interaction or comm unication networks,
mo netary networks, inter-organizational alliances, mental models, texts, web pages, who was present
at what event, and story lines.  These pattern location techn iques, particularly w hen com bined  with
machine learning techniques, are likely to be especially powerful for locating patterns not visible to the
hum an eye.  A key to many of the detection algorithms is that they search for behavior that is different
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from some baseline.  Thus, if run on network data, The baseline might be networks, biased networks,
or a sample of existing networks.  For example, the following kinds of patterns or breaks in patterns
can be examined:

! The basic components that account for the networks structure can be identified; e.g., the number
and types of sub-groups, or the number of triads, stars, and the extent of reciprocity (Anderson,
W asserman, and C rouch, 1999; W asserman, and Pattison, 1996).

! The central tendency within a set of networks, and the networks that are anomalous when
contrasted with the other networks can  be located (Banks and C arley, 1994).

! Critical differences between two or more sets of networks can be identified; e.g., are programming
teams structured differen tly than sales team s or are m anagers’ mental models different from
subordinates (Banks and Carley, 1994; Carley and B anks, 1993; Butts and C arley, 2001).  For sets
of concepts, comparison techniques based on the idea of lossy integration and set theory have been
used to com pare two or m ore con cept netwo rk s o r m ental models (Carley and Palmquist, 1992;
Carley, 1997).  In principle, these methods developed for text analysis could be utilized for the
comparison of social networks.

! W hich compon ents in the network are structured significantly differently from  the rest of the
overall network?  A standard approach is to locate the nodes or sets of nodes that differ significantly
from other nodes on standard measures such as degree centrality, betweenness, and number of
cliques.  However, for extrem ely large networks or wh ere only samples of data on the network exist
this approach may not be feasible (processing time is excessive, space requirements are too high,
or missing data is too high).  Under these conditions, you can use machine learning algorithms
such as simulated annealing (Kirkpatrick, Gelato and Vichy, 1983) or Bayesian updating (Butts,
forthcoming; German, Carlin, Stern, and Ru bin, 1995; Robert, 1994) to search through the
network to locate the node or set of nodes that are highest on som e criteria or best match some
criteria such as excessiv ely high or low centrality. 

! W hether the existing network is coherent; i.e., what is the likelihood that there are key missing
nod es or relations.  One approach here is to locate the differences between an actual network and
a network predicted from  first principles to see where there are differences.  For example, if two
individuals are not interacting in the social network but should be based on the principles of
relative similarity and relative expertise, then there may be hidden relations.  This is one of the
calculations in ThreatFind er (Carley, 2000).

Wh at-if analysis and policy guidance
In addition, multi-agent models of adaptive agents embedd ed in social networks can be used to address
issues of network destabilization by providing managerial and policy guidance (Carley, forthcoming
a).   In a multi-agent computational program the behavior of the group or organization emerges from
the actions and interactions of the agents who are members of the group or organization.  Typically the
agents are able to learn and adapt, although m odels vary widely in the extent to which the agents are
cognitively realistic (Carley, forthcom ing b).  Few m ulti-agent mod els have m ore then 100,000 agents
and in general the number of agents decreases as the cognitive com plexity and realism  of the agents
increases.  Multi-agent systems are typically non-linear and  exhibit path dependence.  Most m ulti-
agent models have no network un derpinning.  In the artific ial life models (Epstein and Axtell, 1997)
the agents typically interact on a grid with physical proximity serving as a proxy for netw orks.  In the
most cognitively sophisticated models, such as the Soar models (Tambe, 1997),  the set of interactions
and so the network are pred efined.  However, recently, there has been a movement to combining
multi-agent and network models (More and Ram anujam , 1999; Levinthal, 1997; Macy and Skvo retz,
1998; Carley, 1990; Carley and Svoboda, 1997).
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Multi-agent network m odels, if based on known inform ation about general or specific characteristics
of groups, can suggest general or specific guidance about how to affect or protect the underlying group,
organization or society.  Exactly what these models can address depends on the purpose of the model
and its veridicality.   Following is a series of illustrative examples of potential applications where various
researchers using multi-agent network models have worked or are working:

! Suggesting factors that m ake groups ad aptive or maladaptive (Carley and  Lee, 1998).

! Examining the efficacy of different policies for destabilizing networks; e.g., what kinds of networks
can be destab ilized by simply rem oving the leader (Arquilla and Ronfeldt, 2001)?  W hat are the
characteristics of networks that are difficult to destabilize (Watts. 1999; Carley, forthcoming a)?

! Examining the efficacy of different data collection and privacy policies.  For example, would we be
mo re likely to mitigate a bioterrorist attack if we kept absentee data or if we tracked hits on web
based m edical information pages (Carley, Yahja and Fridsm a, 2001)?

! Predicting the rate of information diffusion and the impact of different technologies for spreading
information and so changing beliefs through social influence processes (Oram, 2001; Watts, 1999;
Carley, forthcom ing c; Macy an d Strang, forthcom ing).

! Predicting voting outcomes or likelihood of consensus in groups, given the existing social networks
and initial beliefs (Friedkin, 1998; Bueno De M esquita and Stokman , 1994).

! Suggesting factors that can slow the rate of response by a netw ork to a new situation or ev ent,
mitigate the emergence of new behaviors, and limit the ability of the network to adapt (Wegner199
5; Axtell, 2000; Carley, forthcoming a).

! Predicting civil violence (Epstein, Steinbrunner and Parker, 2001)

! Determining how close your group or company is to having its core competencies and processes
discovered  by another grou p (i.e. inevitable disclosure) (Carley, 2000).

! Examine the efficacy of different marketing and information warfare strategies (Pew and M avavor,
1998, ch. 11).

Doubtless each researcher in th is area has  thou ght of these and  other possible applications.  W e note
that at the mom ent there are a number of difficulties in applying existing tools to complex socio-
technical systems.  First, most of the existing mu lti-agent network models are implem ented for sm all
networks. Even when the underlying measure can be used on large networks, containing 1000s or
10,000s of nodes, the underlying computer software or hardware often limits the feasible analysis to
sm all networks, those less than a few hundred  nodes.  For example, UCINET  can handle large node
sets, but, in practice the m emory lim itations on  the m achine on w hich it is run and the lack of
parallelization procedures means that it is an impractical tool for networks of tens of thousands of
nodes.  Second, we have no public databases of large networks on which to test new technologies.
How ever, large networks based  on web linkages are being developed. Third, the existing measures and
tools work best when the data is complete, i.e., when we have full information about the links among
the nodes.  However, large scale distributed networks may have considerable missing data.  We will at
best have sampled information, some of the information may be intentionally hidden (hence missing
data m ay not be randomly distributed), the data is likely to be at different time scales and layers of
granularity, and the cost and time to get com plete inform ation m ay be prohibitive.  Thus, we need to
begin to address issues of sam pling, of estim ating the imp act of missing information, of estimating
networks given basic hum an cognitive properties and popu lation level and cultural data, and  in
combining data from alternative and dispersed sources using techniques such as multiple imputation
(Rubin, 1987, 1996; Schafer, 1997; Yuan, 1990).  There are obviously other difficulties, but even these
provide some guidance for what to expect when applying our existing tools to complex socio-technical
systems.  
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WHY MIGHT IT BE DIFFICULT TO DESTABILIZE DISTRIBUTED NETWORKS?

One possible approach at overcoming, or at least ameliorating, some of these difficulties is to use
compu tational analysis, where the models com bine multiple cognitively realistic agents and social
networks.  We now illustrate the use of such models to address the issue of network destabilization.
As noted, socio-technical systems are comp lex.  First, let us consid er the source of com plexity.  We can
point to a large num ber of sources of complexity: e.g., new technologies, emergent cultures, complex
trade laws, etc. At a more fund amental level there are two very dom inant sources:  (1) humans adapt
and (2) humans interact.  Hum ans adapt in part because they can learn, but what they learn is limited
because they are boundedly ratio nal. Hum an interactions are of course influenced by the web of
affiliations (kinship, religion, econom ics, etc.) that interlock people to varying degrees at different
times. Since individuals can adapt and are woven together into a complex ne twork, the groups,
organizations and institutions of which they are members also have these properties. Thus, we have
intelligent adaptive agents and multiple netw orks.  However, these are not de-coupled systems.
Humans learn when they interact with each other and what they learn changes the kn owledge network
(who knows what), with whom they interact (the social network), and how they perform tasks.  Who
you know and what you know are linked together in a feedback loop.  The result is that the networks
in which people are embedded are dynam ic.

Network dynam ics is a function of not just the social network, but a meta-matrix of networks – not the
least of which are the knowledge network (who kn ows w hat), the information network (what ideas are
related to what), and the assignment network (who is doing what) (C arley and Hill, 2001, Krackhardt
and Carley, 1998). A  high ly simplified version of this meta-matrix representation of the meta-network
is shown in Table 1, where for the sake of simplicity only the networks related to agents, knowledge and
tasks are shown. As noted by Agranoff and McG uire (1999) “the ability to tap the skills, knowledge,
and resources of others is a critical component of networking cap acity,” the ability to manage the
organization.  Similarly, to determine how to change or destabilize a network, then , it is important to
consider the further webs in which a social network is situated and the way in which human cognition
operates (Krackhardt, 1990; Carley and  Hill, 2001).

Table 1.  Simplified Me ta-Matrix Representation of the Meta-Network

Agents Knowledge Tasks

Agents Social Network Knowledge Network Assignm ent Network

Knowledge Information Network Needs Network

Tasks Task-Precedence Network

W e have built a relatively sim ple computational model of this dynamic process — CO NST RUCT -O
(for a description of this model, see Carley and Hill, 2001).  Such models are valuable in addressing
theoretical, social, managerial and policy issues (Carley, 2001; Carley and Gasser, 1999; Epstein and
Axtell, 1997).  A key feature of these m odels is that they let us  think system atically abou t the ram i-
fications of policies, at a scale not comprehensible by the unassisted h um an m ind, and so can help
uncover major problems.  We can use this model to address the question “what leads to the desta-
bilization of networks?”  It is worth noting that the predecessor of this model, CON STRU CT, was used
to examine the factors enabling group stability (Carley, 1990; 1991) and the evolution of networks
(Carley, 1999). 

The mo del works by first assuming a set of agents who differ in terms of their socio-demographic
characteristics (such as age, gender, education), their knowled ge an d beliefs.  In dividuals also forget.
Ind ividuals interact if they are available for interaction and  are motivated  to do so.  There are two basic
motivations to interact – relative similarity and relative expertise – both of which are basic to hum an
nature.  Relative similarity is the tendency of people to choose to interact with those who  are more
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Figure 1. A Stylized Hierarchical Centralized Network

similar. Relative expertise is the tendency of people to seek out new information from those whom  they
perceive to be more expert.  W hen people interact they learn and their learning changes whom  they
view as relatively similar or expert, how well they perform the tasks to which they are assigned, and who
can be assigned to which tasks.

These changes also alter whether or not there is an emergent leader and which individual takes on that
role (Cohen, Bennis and W olkon, 1962).  Individuals are more likely to develop effective leadership
skills if they have high cognitive ability, prior experience (Atwater, Dionne and Avolio, 1999), and
extroversion (Kickul and N eum an, 2000). Individuals who have high cognitive ability and experience
typically take on more tasks, are given more resources, and have m ore know ledge.  Prior experience
and extroversion often lead to a wider range of interaction partners.  Stress typically occurs when cog-
nitive load increases. Additionally, indiv iduals are likely to emerge as leaders if they have high stress
tolerance, have strong self-esteem (Atwater, Dionne and Avolio , 1999) and  are open to new  exper-
iences (Kickul and N eum an, 2000). As su ch they are likely to be w illing to tell others what to do, shed
tasks, give away resources, etc. Individuals with high cognitive loads are likely to be emergent leaders
for a variety of reasons including they are most likely to tell others to do things (i.e., shed tasks) and
most likely to be in a position of power in terms of what and whom they know. An agent is more likely
to be an emergent leader and to direct the activity of the distributed network, even if only temporarily,
if that agent is in a strong structural position in the social, knowled ge an d assignment networks. Ov erall
cognitive load, not sim ply structu ral power, is key to tracking who is likely to be the emergent leader.
Based on these considerations, we defin e th e em ergent leader as the individual with the highest
cogn itive load (the most people to talk to, the most information to process, the most tasks to do, the
hardest tasks to do, the m ost people to negotiate with to get the job done, etc.) (Carley and  Ren, 2001).

The cognitive resources of the grou p and the leader, the cognitive load, and the behavior of the leader
have a combined impact on performance (Fiedler, 1986). Consequently, emergent leaders, by virtue
of their centrality across the entire meta-network are good candidate agents to remove if the goal is to
destabilize the network. Therefore, the effect of node extraction on network evolution will be examined
by removing the emergent leaders from the networks at a particular point in time and then seeing how
the networks evolve.

There are at least three indicators of destabilization. One is where the rate of information flow through
the network has been seriously reduced, possibly to zero. A second is that the network, as a decision-
making body, can no longer reach consensus, or takes much longer to do so.  A third is that the
network, as an organ ization, is less effective; e.g., its accuracy at doing tasks or interpreting information
has been im paired.  There are other instances of network instability, but such measures are sufficient
for this brief introduction.  
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Figure 2.  A Stylized Distributed Decentralized Network

Using this model we examine two very distinct structures – a hierarchical centralized structure and a
distributed decen tralized on e. For bo th structu res, althou gh d ifferent in scale, the underlyin g
distributions of knowledge/resources and tasks are similar as are the networks linking knowl-
edge/resources to tasks and tasks to tasks.  These other networks are not shown as the figure becomes
unwieldy; however, they do impact who learns what over time and so changes in the social network and
cognitive load. The Krackplot representations of only the social network com ponent of these structures
are displayed in Figu res 1 (hierarchical) and 2 (d ecentralized). In Figures 1 and 2, the spatial
arrangement of nodes represents knowledge proximities between agents (i.e., the closer two nodes the
more likely they have similar knowledge).  Those closer together also tend to share m ore knowledge.
The amount of knowledge, resources and tasks associated with each individual agent is not shown.
Ind ividuals seek out others who (1) are similar, knowledge-wise and (2) can provide the resources for
completing his or her tasks. A line connecting two agents indicates that during the window of
observation these two agents interacted with each other. The bold-lines denote strong interaction
network ties that occur when an agent has established a relationship that is part functional (i.e., task-
resource based) and part social (i.e., gen eral kn owledge and  dem ographic based).  

A rectangular node labeled ‘LEADER’ denotes the “Emergent Leader” agent.  This agent is the
individual with the highest cognitive load (i.e., most resources, tasks, and comm unication/netw ork
ties).  An oval node labeled ‘CEN TRA L’ denotes the agent with the most network ties.  If the agent is
both the emergent leader and the most central then a rectangular node labeled ‘LEADER/CE NTRA L’
denotes that agent.   Some agents may share inform ation with others  but are nevertheless not
interacting with any of the other agents during a particular window of observation.  Such  agen ts will
appear as isolated nodes with no lines connecting them to other agents.

It is important to no te that if you only observe the social network, as in Figures 1 and 2, you cannot
determine who has the highest cognitive load and is therefore likely to emerge as a leader. In the
hierarchal network (Figure 1), or for that matter in any network, the emergent leader is not necessarily
the most central agent. If we were to on ly looks at the social network, we might assign leadership on the
basis of the power of the agent’s structural position.  That is, examining just the interaction matrix one
might be tempted to conclude that the agent with the highest degree centrality or betweenness was the
leader.  However, this can be misleading.  While there is often a correlation between an agent’s position
in the social network and their overall cognitive load, it is not perfect.  Centrality is only one of the
factors that enters into the overall calculation of a cognitive load.  To determine loads, the networks
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Figure 3a.  Removal of an Emergent Leader in a Stylized Hierarchical
Centralized Network – Immediate Response to Removal of Emergent Leader

linking individuals to knowledge/resources, tasks are needed, as are the networks linking knowledge
to tasks and tasks to tasks.  For example, in Figu re 1, the m ost central agent, although interacting with
the most others and being cognitively more similar to the m ost others (closen ess in physical space), is
not the emergent leader.  The reason is that this social network is linked into a set of networks denoting
who knows what, does what, what is needed to what tasks, the order in which tasks need to be done,
and so on.

When they visually examine the hierarchical network, most people will predict that removal of either
the leader or the central agent will be most likely to destab ilize the structure. Further, given just the
social network, most people predict that the most central agent is likely to emerge as the new leader.
In contrast, for the distributed decentralized structure, Figure 2, it is not clear w heth er there is a single
node that co uld be removed to destabilize the netw ork.  T here is substantial disagreement among
people who examine this network over which node to remove to destabilize the network, and even over
whether it is even possible to destabilize the network.  This  is the case even when, as in Figure 2, the
emergent leader is the most central agent.  Further, there is little agreement over who will emerge as the
leader.

To really determ ine w heth er rem oval of a node w ill destabilize a structure we need to account for
adaptation.  Since individuals can learn, the underlying social networks are dynamic.  They will change
whether or not various nodes are removed.  Further, individual learning will lead the overall structure
to adapt, often in unforeseen ways as nodes are removed or isolated.  As a result, removing a node m ay
result in a new emergent leader.  This new emergent leader cannot be predicted just from the social
network.  A possible path of change for the hierarchal network in Figure 1 is shown in Figure 3 and a
transition path for the distributed network of Figure 2 is shown in Figure 4.  In each graph, the
emergent leader is again shown as a rectangular node labeled ‘LEADE R’ and the most central agent as
an oval node labeled ‘CE NT RAL.’ In add ition, to help orient the reader, when an agent is removed the
position that that agent would have had if he/she had not been removed is labeled  with the word
‘REMOVE D.’ 

For the hierarchy, we begin with the hierarchy shown in Figure 1. Initially, the emergent lead er’s
cognitive load is significantly higher than the subordinates in the hierarchy.  Then over the course of
the simulation the em ergent leader is extracted. U pon destabilization, the distribution  of cognitive load
shifts such  that m ore agents have higher loads, and more th an one leader em erges.  Figure 3a contains
the resultant network that em erges after the original emergent leader is removed.  Immediately, the
extraction of the leader agent in Figure 1 causes the hierarchy to break up into two smaller networks.
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Figure 3b.  Removal of an Emergent Leader in a Stylized Hierarchical
Centralized Network – Eventual Response

Once the leader is extracted  the network reform s with two em ergent lead ers w ho are essentially
competing for control – neither of which is the most central agent.  After further simulation, the
network has adapted to the loss and a new single leader has emerged (see Figure 3b). In reform ing itself
back into a hierarchy, a new leader emerges whose cognitive load is higher than  that of the first leader,
indicative of a less pure hierarchy .  Not all hierarchies will chan ge in this  way –  but this d iagram  is
illustrative of the im pact of extractin g a lead er on a hierarchical network. 

Removing the leader in a hierarchy  not only destabilized th e network, it also makes the overall
comm unication structure more decentralized.  When centralized groups become decentralized initial
leaders are often dem oted and mo ved to positions of least importance (Cohen, Bennis, and Wolken,
1962).  Cohen, Bennis and W olken (1962) suggested that such a change may be a psychological
response to imposed leadership.  Our analysis suggests that this may simply be the result of structural
differences in the meta-network which lead to differences in cognitive load.   Notice that the leader on
the right in Figure 3a is demoted in 3b.

This example illustrates that destabilizing a hierarchy may have unintended consequences — dem otion
of leaders and initial in-fighting.  It also illustrates that visual inspection of the social network alone led
to an incorrect prediction as to who would emerge as the new leader.  We might ask, what if the central
agent rather than the leader was removed.  Further simulation analysis shows that not only does the
hierarchy not break into factions initially, but its performance is hardly even affected. For hierarchies,
the simulation analysis suggests that regardless of the size of the hierarchy, removal of the leader
degrades perform ance m ore than  removal of the central agent.  M oreover, hierarchies, relativ ely
quickly restab ilize with on ly a single new emergent leader. A number of actions may have consequences
similar to node removal: e.g., isolating, hiring away the leader, reducing the number or com plexity of
tasks the leader is doing, or stopping the flow of information or resources through all links connected
to the leader. For the hierarchical network, the leader’s ability to control the hierarchy can also be
decreased by ad ding new links in the so cial network.  Such additional linkages can also lead  to
perfo rm ance drops.  

In Figure 4, the consequences of removing an emergent leader on a distributed  decentralized netwo rk
are portrayed.  The initial structure is that in Figure 2.  As with the hierarchy, during the course of the
simulation the emergent leader, LEAD ER/C ENT RAL, is now extracted.  In Figure 4a, like Figure 3a,
the position that the original leader would have held if he/she had not been extracted is denoted by the
word ‘REM OV ED’.  In Figure 4a we see that after that a new leader emerges in the same vicinity as the
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Figure 4a. Removal of an Emergent Leader in a Stylized Distributed Decentralized
Network – Immediate Response to Removal of Emergent Leader

original LEADER.  How ever, this newly em ergent leader is neither the m ost central nor does he/she
re-establish the ties that were lost with the former leader.   In the long run, Figure 4b, multiple new
leaders emerge.  In addition, the agent who in Figure 4a was the most central also becomes an emergent
leader.  A third leader emerges in a structural position very similar to that of the original leader (who
was removed).  The fact that two of the new leaders are near the original leader is indicative of the fact
that the structure of the task, knowledge and resource networks (w hich are not visible) in that vicinity
promotes the development of emergent leaders.  Further, when the original leader was presen t, that
agent was inhib iting the emergence of alternative leaders. The original leader had maintained key
resources, knowledge and imp ortant ties. The original leader had played the role of the gatekeeper
between the left and right sides of the netwo rk.  O nce the agent LEADER/CENTRAL was removed,
tasks and resources could be redistributed, agents had to rely on other experts, and multiple leaders
could eventually emerge.

Com putational analysis reveals that even the removal of the  LEADER/ CE NTRA L agent may have
unforeseen effects. In the distributed network adding or dropping links is as likely to increase an
individual node’s pow er as to decrease it.  Consequen tly, the overall impact of rem oving the leader in
a distributed network is not as likely to create a power vacuum  as in the hierarchical network.  If this
is the case, then removal of that agent will have little impact. It may be necessary to simultaneously
remove more nodes to hav e the same impact on a distributed decentralized system as removing one
node would h ave on a hierarchy, In this sense, the problem  of destabilization is more difficult for a
distributed than for a hierarchical network.  We might ask what if the leader was not also central.  As
with the hierarchy, further simulation reveals that the removal of the central agents as opposed to the
leaders is less likely to degrade perform ance.  C om putation al analysis also reveals that rem oval of a
single nod e does not transform  the structure, despite agent adaptation; i.e., hierarchies remain as
hierarchies and distributed structures remain distributed.

W e note that man y resistance groups are organized as distributed decentralized networks.  For
example, in the Earth Liberation Front (ELF) according to ELF  publicist, Craig R osebraugh , there is
a “series of cells across the country with no chain of command” (Barr and Baker, 2001).  In such cases,
there is “no central leadership w here they can go and  knock off the top guy and it will be defunct" (Barr
and Baker, 2001).   Our analysis suggests furth er that even if you find emergent leaders, removing them
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Figure 5.  Change in the distribution of Cognitive load

Figure 4b.  Removal of an Emergent Leader in a Stylized Distributed Decentralized
Network – Eventual Response

sim ply paves the way for new leaders to emerge and the overall network will remain  mo re or less intact.
How ever, unlike the hierarchy, the removal of the initial LEADER  may serve to, in the long run,
increase internal fighting as multiple LEADER S are likely to eventually emerge.  The hierarchy splits
in to factions then reforms as a hierarchy with one leader, the distributed system do es not faction at first
but may eventually as multiple leaders emerge.

To really  track and understand network dynamics, to really be able to determine how to destabilize
networks, we need to consider the position of individuals and groups as they are embedded in the
overall meta-network.  We need to m ove beyond em beddedness in the social network (Granovetter,
1985) to overall embedded ness in the meta-network. Although he does not use the network nomen-
clature, this  is essentially Schein’s (1985) po int in his discussion of leadership .  

Herein we used cognitive load  to track em bed ded ness in the overall meta-network lin king personn el,
knowledge/resources and tasks.  Now examine the change in the distribution of cognitive load for the
distributed decentralized network (Figure 5).  These distributions, going form  left to right, correspond
to Figure 2, Figure 4a  and 4b respectively. The original leader has a much  higher cognitive load than
do other mem bers of the distributed decentralized structure. Initial destabilization results in m ultiple
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emergent leaders forming, as indicated by the subsequent distributions of cognitive load.  While the
num ber of emergent leaders drops as the network re-stabilizes, the emergent leaders are not as
distinctive as  the original.

As network theorists, we often think abou t networks as snapshots – pictures of a group at a point in
time.  The techniques and tools that have been developed over the past several decades are extrem ely
useful in understanding such  networks (assuming of course that the data is com plete or almost so).
Moreover, we often think of networks primarily in terms of a relatively small, single relation and single
type of node; e.g., friendship among students.  At this point in time, few tools are available to the
analyst interested in large, adaptive, multi-plexed, multi-coloured networks with high levels of missing
data.  The developm ent of such tools is necessary if we are to successfully meet the challenge of
understanding, predicting and explaining the behaviour of multi-agent networks of this ilk.  Wh ether
the topic is terrorism, the global economy or the nature of the Internet, we are dealing with complex
socio-technical systems that are large, multiplex, multi-nodal and adaptive.  It is critical that we rise to
this challenge and develop a new set of tools combining the methodologies of social networks and
com puter science. W ithout such tools, we will be theorizin g in the dark. 
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