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Abstract

An analysis is conducted on the robustness of measures of centrality in the face of random error in
the network data. We use random networks of varying sizes and densities and subject them (separately)
to four kinds of random error in varying amounts. The types of error are edge deletion, node deletion,
edge addition, and node addition. The results show that the accuracy of centrality measures declines
smoothly and predictably with the amount of error. This suggests that, for random networks and
random error, we shall be able to construct confidence intervals around centrality scores. In addition,
centrality measures were highly similar in their response to error. Dense networks were the most
robust in the face of all kinds of error except edge deletion. For edge deletion, sparse networks were
more accurately measured.
© 2005 Published by Elsevier B.V.

1. Introduction

Conventional wisdom has it that network analysis is intolerant of missing or mistaken
data. On the basis of examples likeFig. 1(Roethlisberger and Dickson, 1939), we typically
reason that the failure to record a single node (such as W5) or a single tie (such as the tie
between W5 and W7) can lead to a radically different understanding of the network and
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Fig. 1. Games relation from Hawthorne Bank Wiring Room study (Roethlisberger and Dickson, 1939). Isolates
removed.

misleading measurements of network indices such as centrality. Similarly, it is commonly
assumed that it is not possible to measure node properties like centrality accurately when
sampling nodes or ties from networks.

However, very little work has actually been done to check these assumptions and eval-
uate under what circumstances measures computed on “errorful” or sampled network data
could be accurate. A notable exception is the work byMarsden (1990)using the GSS
data on networks. In later work,Marsden (1993)went on to suggest conditions under
which network density and composition estimates were likely to be reliable. More recently,
Costenbader and Valente (2003)examined the robustness of centrality measures in the face
of inaccurate or incomplete network data. In this paper, we replicate and extend this work,
examining the accuracy of centrality measures when data are incomplete due to either
random measurement error (including missing data) or deliberate sampling on nodes or
edges.

Understanding the robustness of basic network measures is extremely important in order
to assess the validity of network research. This is particularly true when we study large
or covert networks, where the data is likely to be missing or hidden (Carley et al., 2001;
Carley, 2003). Centrality measures provide a good starting point as they are among the most
frequently used of all network measures. Our fundamental research question is to understand
how accuracy in the measurement of centrality declines with increasing error. As a practical
corollary, we ask how the relationship between error and robustness is affected by basic
characteristics of the network, such as size and density.

We should note that previous work in this area (Marsden, 1990; Costenbader and Valente,
2003) relied on empirical samples (i.e., “real data”) in assessing the various network mea-
sures. A limitation of this approach is that the sampling errors contained in the data are
likely to be systematic, but the pattern is unknown. Another limitation is that the sample
of networks is necessarily very limited. To overcome these limitations, we take a statistical
computational approach and examine robustness in a very large sample of random graphs,
into which we introduce a controlled amount and kind of error.
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2. Methodology

We start with a known or true network (which could also be regarded as the population
network), compute centrality (referred to as “true centrality”), distort or sample from the net-
work to generate the observed network, compute centrality on the observed network (called
the “observed centrality”), and then compare the true and observed centrality measures.

To construct the true networks, we used random networks of varying sizes and densities
generated by the method ofErdos and Renyi (1959). Networks of size 10, 25, 50, and 100
nodes were generated. For each size, networks of the following densities were constructed:
1, 2, 5, 10, 30, 50, 70, and 90%.

For each network, exactly one of four types of error was introduced in order to construct
the observed network: node removal, node addition, edge removal, and edge addition. Node
removal refers to the extraction of a certain proportion of existing nodes, selected at random.
Node addition refers to the insertion of a certain proportion of extra nodes into the network.
Whenever a node was added, ties were also randomly added from the node to other nodes
in the network. The degree of the new node was chosen by randomly selecting an existing
node and adopting its degree.1 Edge removal refers to dropping a given proportion of edges,
selected at random. Edge addition refers to the addition of ties not present in the true network,
simulating measurement error in which ties are erroneously recorded between nodes that in
truth are not tied. The following proportions of error were introduced across all four kinds
of error: 0, 1, 5, 10, 25, and 50%.2

Both the node-removal and edge-removal cases can be thought of as forms of sampling
from the network, since what remains after removal is a random sample of the network.
However, we note that this kind of sampling is different from the kind of sampling found
in ego-network analysis, in which all ties of a given type connected to a sampled node are
collected, including ties to nodes not in the sample. For measuring degree centrality and
possibly betweenness centrality (Everett and Borgatti, 2005), this ego-net form of sampling
would be expected to yield more accurate centrality estimates than the kind of sampling we
are doing here.

Thus, for each kind of error, we use an 8× 6× 4 factorial design (eight levels of
density× six levels of error× four levels of network size) for a total of 192 distinct combi-
nations. For each of the 192 combinations, we generated 10,000 pairs of true and observed
networks.

There are many measures of centrality of a node in a graph (Wasserman and Faust, 1994,
p. 169), dating back as far asMoreno (1934)who identified “stars” as those with special
importance and influence. Within this family, four measures stand out as foundational in our
field: degree, closeness, betweenness, and eigenvector centralities. Their prominence within
the field of network analysis stems from the fact that they all have strong yet distinct theo-
retical underpinnings (Freeman, 1979; Bonacich, 1972, 1987) and that they are frequently
used for empirical analysis of social systems (e.g., seeBrass and Burkhardt (1993)for a
review of their use in organizational research; seePodolny (1993)for an influential study

1 However, ties among the new nodes add to each node’s degree, so that new nodes have higher overall degree
than corresponding original nodes.

2 The 0% error cases provided a check on the programming and a starting point for line diagrams.
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Table 1
Measures of centrality robustness

Measure Description

Top 1 Proportion of times that the most central node in the true network is also the most central node
in the observed network

Top 3 Proportion of times that the most central node in the observed network is among the top three
most central nodes in the true network

Top 10% Proportion of times that the most central node in the observed network is among the top ten
percent of nodes in the true network

Overlap Number of nodes in both the top 10% of the true network and the top 10% of the observed
network, divided by the number of nodes in either

R2 Square of the Pearson correlation between true centralities and observed centralities, taking as
cases only nodes found in both the true and observed networks

based on Bonacich’s eigenvector centrality). For these reasons, we will restrict ourselves to
these four measures in the present paper.

For each pair of networks, we measure degree, betweenness, closeness and eigen-
vector centrality, and compare them using five measures of accuracy (seeTable 1). The
accuracy measures are averaged across the 10,000 replications for each cell in the exper-
imental design, resulting in a single value for each measure for each of the 192 factorial
combinations.

The first measure of accuracy, labeled “Top 1” in tables all tables, is the average proportion
of times that the most central node in the observed network was also the most central node in
the true network. The second measure, labeled “Top 3”, is the proportion of trials in which
the most central node in the observed network is among the top three most central nodes
in the true network. The third measure, labeled “Top 10%”, is the proportion of trials in
which the most central node in the observed network is in the top decile of the true network.
The fourth, labeled “Overlap”, gives the overlap between the top decile of the observed
network and the top decile of the true network. It is computed as|U ∩ V|/|U ∪ V|, whereU
is the set of nodes in the top decile of the observed network, andV is the set of nodes in
the top decile of the true network. The numerator gives the size of the intersection ofU and
V, while the denominator gives the size of the union ofU andV. The ratio is 1 when the
deciles are identical, and 0 when they are wholly disjoint. The last measure of accuracy,
labeled “R2”, is the square of the Pearson correlation coefficient between true and observed
centrality. We interpret it as the proportion of variance in true scores accounted for by
observed centrality. For the node-removal and node-addition error types (in which true and
observed networks have different sets of nodes), the correlation measure is calculated on only
those nodes that appear in both the true and observed networks; nodes not in common are
ignored.

The analysis consists primarily of scatterplots of centrality robustness as a function
of amount of measurement error added, across different types of error. In addition, some
regressions are performed in order to examine the effects of network size and density
on robustness. The data for these regressions are mean accuracy scores for each of the
192 experimental combinations; hence, the cases are treatment groups. As a result, the
regressions are descriptive only, and we do not report significance tests.
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3. Results

Table 2presents average accuracy scores for all centrality measures and all measures of
accuracy at all error levels of all types of error. For simplicity, only results for graphs of size
100 and density 50% are shown.3 The effects of network size and density on robustness are
discussed in a later section.

Perhaps the most striking thing aboutTable 2is the similarity in results obtained across
centrality measures. A comparison of corresponding columns for each measure (such as
node removal for degree compared to node removal for betweenness) shows that the four
centrality measures behave virtually identically in the face of measurement error. This
suggests that the distinction between local and global measures of centrality (Scott, 2000) is
not as important as previously thought. These results are consistent with those ofEverett and
Borgatti (2005)who found that betweenness calculated on ego networks (a local measure)
was, on average, nearly identical to betweenness calculated on the full network in which
ego networks were embedded (a global measure).

Fig. 2 presents scatter plots of betweenness accuracy as a function of error level for
all four kinds of error. Each curve in the plots represents a different method of measuring
accuracy. We note that the accuracy measures have distinctive characteristic curves. The
Top 1 and Overlap measures decline the most rapidly, in a pattern resembling an exponential
decay. These are the strictest measures of accuracy. TheR2 and Top 3 measures decline
approximately linearly with increasing error. Finally, the Top 10 measure of accuracy is
also largely linear and the least sensitive, declining quite gently as a function of error.

It is also apparent that accuracy declines very smoothly and predictably with increases in
error. For example, theR2 measure declines linearly with error, and in fact the proportion of
variance in true centrality accounted for by observed centrality is approximately 1− Error,
so that losing 25% of nodes yields 75% variance accounted for, while losing 50% of nodes
yields 50% variance accounted for. The monotonicity and predictability of accuracy decline
is very good news because it means that if we knew the level of (random) error in a dataset,
we could in principle construct error bounds around our centrality estimates.

The effects of different kinds of error are remarkably similar to each other. In particular,
the shapes of the accuracy functions are nearly the same across error types. With respect to
overall levels of accuracy, careful comparison of the values inTable 2shows that node errors
are generally more forgiving than edge errors at the same nominal error rate, and that node
addition is in general the most forgiving error while edge addition is the least forgiving. A
regression analysis (not shown) of accuracy on (dummied) error type, controlling for error
level, network size and density, shows that on average, node addition increases the expected
R2 by approximately .25 relative to edge addition.

An intriguing area to explore is the effect of density on accuracy.Table 3shows standard-
ized regression coefficients for density in regressions of betweenness accuracy on density
and error level, for graphs of size 100.4 As noted earlier, the cases for the regressions are the

3 Because we investigate both the addition and deletion of ties, 50% density represents a neutral point for
comparison with respect to robustness. As explained in a later section, lowering density favors edge removal,
while raising it favors edge addition.

4 Results are similar for the other measures of centrality.
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Table 2
Accuracy results for graphs of 100 nodes and 50% density

% Error Degree centrality Betweenness Closeness Eigenvector

Node
removal

Node
addition

Edge
removal

Edge
addition

Node
removal

Node
addition

Edge
removal

Edge
addition

Node
removal

Node
addition

Edge
removal

Edge
addition

Node
removal

Node
addition

Edge
removal

Edge
addition

Top 1
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 .86 .88 .83 .84 .86 .86 .82 .82 .86 .88 .83 .84 .86 .87 .83 .83
5 .68 .71 .62 .62 .68 .69 .61 .62 .68 .71 .62 .62 .68 .71 .61 .61

10 .57 .62 .49 .49 .56 .58 .48 .48 .57 .62 .49 .49 .56 .62 .49 .48
25 .34 .47 .29 .30 .34 .41 .28 .29 .34 .47 .29 .30 .34 .49 .29 .29
50 .16 .35 .15 .14 .15 .27 .14 .13 .16 .35 .15 .14 .16 .38 .15 .14

Top 3
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 .99 .97 .99 .99 .99 .97 1.00 1.00 .99 .97 .99 1.00 .99 .97
5 .94 .95 .91 .87 .93 .94 .90 .86 .94 .95 .91 .87 .93 .95 .91 .87

10 .86 .89 .80 .77 .85 .87 .80 .75 .86 .89 .80 .77 .85 .89 .80 .76
25 .63 .75 .55 .53 .63 .70 .54 .51 .63 .75 .55 .53 .62 .78 .54 .53
50 .34 .61 .32 .29 .33 .51 .30 .28 .34 .61 .32 .29 .34 .65 .31 .29

Top 10%
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 .99 1.00 1.00 1.00 .98 1.00 1.00 1.00 .99 1.00 1.00 1.00 .99

10 .99 1.00 .98 .95 .99 .99 .98 .95 .99 1.00 .98 .95 .99 1.00 .98 .95
25 .91 .96 .85 .81 .90 .94 .85 .79 .91 .96 .85 .81 .91 .97 .85 .80
50 .64 .88 .61 .55 .63 .81 .59 .54 .64 .88 .61 .55 .64 .91 .59 .54
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Table 2 (Continued )

% Error Degree centrality Betweenness Closeness Eigenvector

Node
removal

Node
addition

Edge
removal

Edge
addition

Node
removal

Node
addition

Edge
removal

Edge
addition

Node
removal

Node
addition

Edge
removal

Edge
addition

Node
removal

Node
addition

Edge
removal

Edge
addition

Overlap
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 .84 .85 .82 .82 .84 .84 .81 .81 .84 .85 .82 .82 .84 .85 .82 .81
5 .68 .72 .64 .64 .68 .71 .63 .63 .68 .72 .64 .64 .68 .73 .64 .64

10 .58 .64 .54 .53 .57 .61 .53 .53 .58 .64 .54 .53 .58 .65 .53 .53
25 .39 .51 .37 .37 .38 .46 .36 .36 .39 .51 .37 .37 .38 .54 .37 .37
50 .21 .42 .24 .23 .20 .35 .23 .23 .21 .42 .24 .23 .21 .45 .23 .23

R2

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 .98 .98 1.00 .98 .98 .98 1.00 1.00 .98 .98 1.00 1.00 .98 .98
5 .94 .94 .90 .90 .94 .94 .90 .90 .94 .94 .90 .90 .94 .96 .90 .90

10 .90 .90 .81 .81 .88 .88 .81 .81 .90 .90 .81 .81 .90 .92 .81 .81
25 .74 .81 .59 .59 .72 .74 .58 .58 .74 .81 .59 .59 .74 .83 .59 .59
50 .48 .69 .32 .34 .46 .58 .31 .31 .48 .69 .32 .32 .48 .72 .32 .32
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Fig. 2. Scatter plots of average betweenness accuracy as a function of error level for all four kinds of error (limiting
to graphs with 100 nodes and 50% density). Each line represents a different accuracy measure. Top line: Top 10%.
Second line:R2. Third line: Top 3. Fourth line: Overlap. Bottom line: Top 1.
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Fig. 2. (Continued ).
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Table 3
Standardized regression coefficients for density only in regressions of betweenness accuracy measures on density
and error level, for graphs of size 100

Error type Top 1 Top 3 Top 10% Overlap R2

Edge addition .408 .469 .495 .412 .504
Edge removal −.267 −.287 −.348 −.269 −.177
Node addition −.164 −.162 −.219 −.2 −.156
Node removal .014 .025 .001 .004 .003

Each coefficient is drawn from a separate regression.

192 experimental combinations, and the dependent variables are average accuracy scores.
The results indicate that, controlling for error level, density enhances accuracy in the case
of edge additions, but reduces accuracy in the case of edge deletion. This moderated effect
of density on accuracy is probably due to the number of dyads available to be changed. In
the case of edge removal, greater density means more ties available to be removed, making
greater changes in the network as a whole and therefore reducing accuracy. In the case of
edge addition, greater density means fewer untied dyads available to be tied, and so fewer
changes to the network as a whole. Thus, the underlying variable is the absolute amount of
change to the network—the Hamming distance between the true and observed networks.
A similar effect may occur with node addition. When we insert nodes, we add ties from
the new nodes to the old ones and to the other new ones. The number of ties added is a
non-linear function of the density of the original network. As a result, denser networks
result in disproportionately more ties being added which increases the Hamming distance
between true and observed networks.

Similar regressions involving network size (seeTable 4) show that network size is only
weakly related to accuracy, especially in the case of ther2 measure, where the effect was
essentially zero. For the Top 1 and Top 3 measures, the effect of size is negative. This
occurs for strictly structural reasons: as networks get larger, the chances that a particular
node occupies the same status slot (such as Top 1 or Top 3) in a perturbed version of the
network gets progressively smaller—i.e., the ratio of possible matches to possible non-
matches decreases with increasing size. For the Top 10% measure, the effect of size is
positive. This is because the Top 10% criterion (the proportion of times that the most central
node in the true network is found in the top 10% of the observed network), effectively makes
the “strike zone” for correct matches proportional to the network size. As a result, size is
positively related to accuracy measured in this way.

Table 4
Standardized regression coefficients for network size in regressions of betweenness accuracy on size, density and
error level

Error type Top 1 Top 3 Top 10 Overlap R2

Edge addition −.166 −.188 .122 −.120 −.067
Edge removal −.261 −.290 .157 −.220 −.087
Node addition −.295 −.276 .182 −.253 −.078
Node removal −.224 −.265 .221 −.194 −.151

Each coefficient is drawn from a separate regression.
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4. Summary and conclusion

We have systematically explored the robustness of centrality measures in the face of
varying amounts and types of measurement error. A number of conclusions can be drawn.
Perhaps the most important is that accuracy not only declines with increasing error, but does
so predictably and monotonically. The implication of this finding is that, in principle at least,
if one knows the rate and type of error in the data collection process, one can establish error
bounds on the metrics constructed from the observed data.

Another key finding was that the four centrality measures considered in this paper are
surprisingly similar with respect to pattern and level of robustness. In terms of pattern
of robustness – the response curves across experimental conditions – the measures are
essentially identical. In terms of overall level of robustness, the measures are extremely
similar, with betweenness consistently a hair lower than the other three across all measures
of accuracy. This goes against the intuitive notion that global measures of centrality like
betweenness would be more sensitive to changes in the network than local measures like
degree, since they are potentially affected by any change in the network no matter how
distant. It may be that the networks in our study – all of which were random graphs –
contained enough redundancy at the path level to counteract the sensitivity of the global
measures. If each pair of nodes were connected by multiple geodesic paths, the loss of a
few nodes or lines would have much less effect on the global measures.

Another surprising result was that the different types of error had relatively similar effects
on centrality robustness. We might have expected a priori that node perturbations would
create greater problems for measuring centrality than edge perturbations, because the loss
of a node necessarily entails the loss of edges as well. But the results show that type of error
makes relatively little difference, and what difference there is runs in the opposite direction:
edge perturbation makes more difference. We believe that this result may be limited to
random graphs.

Density of the true network tends to reduce accuracy for all kinds of error except edge
addition, where it increases accuracy. The contingent effect of density on accuracy is due to
the number of dyads available to be changed. In the case of edge removal, greater density
means more ties available to be removed, making greater changes in the network as a whole.
In the case of edge addition, greater density means fewer untied dyads available to be tied,
and so fewer changes to the network as a whole. Thus, the underlying variable is the absolute
amount of change to the network—the Hamming distance between the true and observed
networks.

One question that we have not specifically addressed is the practical bottom-line—is it
reasonable to compute centrality indices when we know that the data contain errors? Based
on our results, the answer would seem to be ‘yes’, as the measures of centrality tested were
quite robust under small amounts of error (such as 10% and under). Of course, whether the
levels of accuracy are sufficient for any given purpose is difficult to assess since it depends
on external factors such as the consequences of error. For example, the results suggest
that if our data collection method misses 5% of ties, then the correlation between true and
observed centrality will be in the .90s. By social science research standards, the observed
score is clearly a superb proxy for the true score. On the other hand, for some applications
even this level accuracy may not be sufficient. At that error rate, the probability of correctly



S.P. Borgatti et al. / Social Networks 28 (2006) 124–136 135

identifying the most central node is around 90%, and the expected overlap in the top 10%
is just 67%. One can imagine a situation, perhaps in managing an epidemic, where failing
to quarantine or immunize the most central actors could have huge costs in human lives
(Borgatti, 2003). In such a case, these results might suggest the need for more accurate
methods of data collection.

A crucial limitation of this study is that we have studied only random error on random
networks. This is appropriate as a first step in understanding how measurement error affects
the calculation of network indices, but it should be clear the results could be quite different
for practical settings in which (a) the data collection methodology makes systematic errors
(such as more readily losing nodes with low degree), and (b) the networks themselves are
not randomly constructed (as we expect for most human networks).
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