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Abstract

There has been an explosive growth of data-mining models involving latent structure for clus-
tering and classification. While having related objectives these models use different parameter-
izations and often very different specifications and constraints. Model choice is thus a major
methodological issue and a crucial practical one for applications.

In this paper, we work from a general formulation of hierarchical Bayesian mixed-membership
models in Erosheva [15] and Erosheva, Fienberg, and Lafferty [19] and present several model
specifications and variations, both parametric and nonparametric, in the context of the learning
the number of latent groups and associated patterns for clustering units. Model choice is an
issue within specifications, and becomes a component of the larger issue of model comparison.

We elucidate strategies for comparing models and specifications by producing novel analyses
of two data sets: (1) a corpus of scientific publications from the Proceedings of the National
Academy of Sciences (PNAS) examined earlier by Erosheva, Fienberg, and Lafferty [19] and
Griffiths and Steyvers [22]; (2) data on functionally disabled American seniors from the National
Long Term Care Survey (NLTCS) examined earlier by Erosheva [15, 16, 17], Erosheva and
Fienberg [18].

Our specifications generalize those used in earlier studies. For example, we make use of both
text and references to narrow the choice of the number of latent topics in our publications data,
in both parametric and nonparametric settings. We then compare our analyses with the earlier
ones, for both data sets, and we use them to illustrate some of the dangers associated with
the practice of fixing the hyper-parameters in complex hierarchical Bayesian mixed-membership
models to cut down the computational burden. Our findings also bring new insights regarding
latent topics for the PNAS text corpus and disability profiles for the NLTCS data.

Keywords: Disability data, Model choice, Model specification, Soft clustering,Text analysis,
Survey data
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1 Introduction

A general class of models that has recently gained popularity thanks to its ability to deal with
minimal information and noisy labels in a systematic fashion can be viewed as special cases or
variants of Hierarchical Bayesian Mixed-Membership Models (HBMMMs henceforth). Models in
this class are viewed by some as bridging situations in which we have full information about the
class labels, i.e., a typical classification setting, and situations in which we have no information
about the class labels, i.e., a typical clustering setting. From our perspective, they go beyond
these models by allowing each object of study, e.g., words or individuals, to belong to more than
one class, group, or cluster [19, 18, 1].

HBMMMs are Bayesian models specified in terms of a hierarchy of probabilistic assumptions
(i.e., a directed acyclic graph) that involves:

• observations, x,

• latent variables, θ, and

• parameters for the patterns associated with the groups or clusters, β.

The likelihood of the data is then a function

ℓ
(

x
∣

∣ β
)

=

∫

θ

ℓ
(

x, θ
∣

∣ β
)

Dα(dθ). (1)

where Dα(dθ) is a prior distribution over the laten variables. During pattern discovery, i.e.,
posterior inference, we condition on the values of the observed data and maximize the likelihood
with respect to a set of parameters β that describe the patterns associated with the group.

The focus in pattern discovery with HBMMMs is not on the variable amount of information
about the labels for the objects, but rather it is on the hierarchy of probabilistic assumptions
that we believe provide the structure underlying the data and ultimately lead to the likelihood
function. Whatever the amount of information about the class labels, full, partial, minimal, or
none, we simply treat the information as observations about the attributes and we condition upon
it. The missing information about the labels or weights on the classes or groups is recovered
during pattern discovery (i.e., posterior inference) as it is the information about other non-
observable patterns. In this sense, HBMMMs are essentially soft-clustering models in that
the mixed-membership error model for the labels associates each observation with a vector of
memberships that sum to one. The parameters of this error model inform the average abundance
of specific class labels without imposing hard constraints, e.g, must-belong or must-not belong.
Rather, the constraints are soft, probabilistic constraints.

Because of their flexibility, instances of HBMMMs have recently gained popularity in a variety
of applications, e.g., population genetics [35, 37], scientific publications [11, 19, 22], words and
images [8], disability analysis [15, 16, 17], fraud detection [31], biological sequences & networks
[2]. Further, we note that the class of HBMMMs is closely related to popular unsupervised data
mining methods such as probabilistic principal component analysis [43], parametric independent
component analysis, mixtures of Gaussians, factor analysis [21], hidden Markov models [36], and
state-space models [3]. Few papers recognize that these methods and diverse applications share
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with HBMMMs a number of fundamental methodological issues such as those we focus on in
the present paper.

1.1 The Issue of Model Choice

As we hinted in the discussion above, in these models classification and clustering tasks cor-
respond to the same mathematical problem of maximizing the likelihood. This, in turn, cor-
responds to resolving the mixed membership of observations to categories (which are typically
observed only for a negligible portion of the data), and to pattern discovery. A fundamental
issue of HBMMMs is that of “model choice”, that is, the choice of the number of latent cate-
gories, groups, or clusters. Positing an explicit model for the category labels requires a choice
regarding the number of existing categories in the population, i.e., the “choice” of the model. A
parametric model for the labels would assume the existence of a predetermined number, K, of
categories, whereas a nonparametric error model would let the number of categories grow with
the data.

We explore the issue of model choice in the context of HBMMMs, both theoretically and
computationally, by investigating the nexus between strategies for model choice, estimation
strategies, and data integration in the context of data extracted from scientific publications and
American seniors.

1.2 Overview of the Paper

In this paper, we present the following ideas and results: (1) we describe HBMMMs a class of
models that respond to the challenges introduced by modern applications, and we characterize
HBMMMs in terms of their essential probabilistic elements; (2) we identify the issue of “model
choice” as a fundamental task to be solved in each applied data mining analysis that uses
HBMMMs; (3) we survey several of the existing strategies for model choice; (4) we develop new
model specifications, as well as use old ones, and we employ different strategies of model choice
to find “good” models to describe problems involving text analysis and survey data; (5) we
study what happens as we deviate from statistically sound strategies in order to cut down the
computational burden, in a controlled experimental setting.

Although “common wisdom” suggests that different goals of the analysis (e.g., prediction of
the topic of new documents or of the disability profile of a new person age 65 or over, versus
description of the whole collection of documents in terms of topics or of the elderly in terms
of disability profiles) would lead us to choose different models, there are few surprises. In fact,
from the case studies we learn that:

1. Independently of the goal of the analysis, e.g., predictive versus descriptive, similar prob-
abilistic specifications of the models often support similar “optimal” choices of K, i.e., the
number of latent groups and patterns;

2. Established practices aimed at reducing the computational burden while searching for the
best model lead to biased estimates of the “optimal” choices for K, i.e., the number of
latent groups and patterns.
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Arriving at a “good” model is a central goal of empirical analyses. These models are often
useful in a predictive sense. Thus our analyses in the present paper relevant as input to (1)
those managing general scientific journals as they re-examine current indexing schemes or con-
sidering the possible alternative of an automated indexing system, and (2) those interested in
the implications of disability trends among the US elderly population as the rapid increase in
this segment of the population raises issue of medical care and the provision of social security
benefits.

2 Two Motivating Case Studies

Our study is motivated by two recent analyses about a collection of papers published in the
Proceedings of the National Academy of Sciences (PNAS) [19, 22], and by two recent analyses
of National Long Term Care Survey data about disabled American seniors [15, 16, 17, 18, 42].

2.1 PNAS Biological Sciences Collection (1997–2001)

Erosheva et al. [19] and Griffiths & Steyvers [22] report on their estimates about the number
of latent topics, and find evidence that supports a small number of topics (e.g., as few as 8
but perhaps a few dozen) or as many as 300 latent topics, respectively. There are a number of
differences between the two analyses: the collections of papers were only partially overlapping
(both in time coverage and in subject matter), the authors structured their dictionary of words
differently, one model could be thought of as a special case of the other but the fitting and
inference approaches had some distinct and non-overlapping features. The most remarkable and
surprising difference come in the estimates for the numbers of latent topics: Erosheva et al.
focus on values like 8 and 10 but admit that a careful study would likely produce somewhat
higher values, while Griffiths & Steyvers present analyses they claim support on the order of
300 topics! Should we want or believe that there are only a dozen or so topics capturing the
breadth of papers in PNAS or is the number of topics so large that almost every paper can have
its own topic? A touchstone comes from the journal itself. PNAS, in its information for authors
(updated as recently as June 2002), states that it classifies publications in biological sciences
according to 19 topics. When submitting manuscripts to PNAS, authors select a major and a
minor category from a predefined list list of 19 biological science topics (and possibly those from
the physical and/or social sciences).

Here, we develop an alternative set of analyses using the version of the PNAS data on
biological science papers analyzed in [19]. We employ both parametric and non-parametric
strategies for model choice, and we make use of both text and references of the papers in the
collection, in order to resolve this issue. This case study gives us a basis to discuss and assess
the merit of the various strategies.

2.2 Disability Survey Data (1982–2004)

In the second example, we work with an excerpt of data from the National Long-Term Care
Survey (NLTCS) to illustrate the important points of our analysis. The NLTCS is a longitudinal
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survey of the U.S. population aged 65 years and older with waves conducted in 1982, 1984 1989,
1984, 1999 and 2004. It is designed to assess chronic disability among the US elderly popu-
lation especially those who show limitations in performing some activities that are considered
normal for everyday living. These activities are divided into activities of daily living (ADLs)
and instrumental activities of daily living (IADLs). The ADLs are basic activities of hygiene
and healthcare: eating, getting in/out of bed, moving inside the house, dressing, bathing and
toileting. The IADLs are basic activities necessary to reside in the community: doing heavy
housework, doing light housework, doing the laundry, cooking, grocery shopping, moving outside
the house, traveling, managing money, taking medicine and telephoning. The subset of data was
extracted by [15] from the analytic file of the public use data file of the NLTCS. It consists of
combined data from the first four survey waves (1982, 1984, 1989, 1994) with 21, 574 individuals
and 16 variables (6 ADL and 10 IADL). For each activity, individuals are either disabled or
healthy on that activity (in the data table, this is coded by 1 if the individual is disabled and
0 if he is healthy). We then deal with a 216 contingency table. Of the 216 = 65, 536 possible
combinations of response patterns, only 3, 152 are observed in the NLTCS sample.

Here we complement the earlier analyses of Erosheva [15] and Erosheva and Fienberg [18].
In particular, these earlier analyses focused primarily on the feasibility of estimation and model
selection under the presumption that K was small, i.e., equal or less than 5. We focus on
increasing the number of latent profiles to see if larger choices of K result in better descriptions
of the data and to find the value of K which best fits the data.

3 Characterizing HBMMMs

There are a number of earlier instances of mixed-membership models that have appeared in
the scientific literature, e.g., see the review in [18]. A general formulation due to [15], and also
described in [19], characterizes the models of mixed-membership in terms of assumptions at four
levels. In the presentation below, we denote subjects with n ∈ [1, N ] and observable response
variables with j ∈ [1, J ].

A1–Population Level. Assume that there are K classes or sub-populations in the popula-
tion of interest J distinct characteristics. We denote by f(xnj|βjk) the probability distribution
of j-th response variable in the k-th sub-population for the n-th subject, where βjk is a vector of
relevant parameters, j ∈ [1, J ],and k ∈ [1,K]. Within a subpopulation, the observed responses
are assumed to be independent across subjects and characteristics.

A2–Subject Level. The components of the membership vector θn = (θn[1], . . . , θn[K])
′ repre-

sent the mixed-membership of the n-th subject to the various sub-populations.1 The distribution
of the observed response xnj given the individual membership scores θn, is then

Pr (xnj|θn) =
K
∑

k=1

θn[k]f(xnj|βjk). (2)

Conditional on the mixed-membership scores, the response variables xnj are independent of one
another, and independent across subjects.

1We denote components of a vector vn with vn[i], and the entries of a matrix mn with mn[ij].
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Figure 1: Left: A graphical representation of hierarchical Bayesian models of mixed-membership.
Right: Models of text and references used in this paper. Specifically, we pair replicates of
variables {xr
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2} with latent variables {zr

1 , z
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2} that indicate which latent aspects informs the

parameters underlying each individual replicate. The parametric and non-parametric version of
the error models for the label discussed in the text refer to the specification of Dα—a Dirichlet
distribution versus a Dirichlet process, respectively.

A3–Latent Variable Level. Assume that the vectors θn, i.e., the mixed-membership scores
of the n-th subject, are realizations of a latent variable with distribution Dα, parameterized by
vector α. The probability of observing xnj, given the parameters, is then

Pr (xnj|α, β) =

∫

(

K
∑

k=1

θn[k]f(xnj|βjk)

)

Dα(dθ). (3)

A4–Sampling Scheme Level. Assume that the R independent replications of the J distinct
response variables corresponding to the n-th subject are independent of one another. The
probability of observing {xr

n1, . . . , x
r
nJ}Rr=1, given the parameters, is then

Pr ({xr
n1, . . . , x

r
nJ}Rr=1|α, β) =

∫





J
∏

j=1

R
∏

r=1

K
∑

k=1

θn[k]f(xr
nj|βjk)



Dα(dθ). (4)

The number of observed response variables is not necessarily the same across subjects, i.e.,
J = Jn. Likewise, the number of replications is not necessarily the same across subjects and
response variables, i.e., R = Rnj .

3.1 Example 1: Latent Dirichlet Allocation

Our general framework encompasses popular data mining models, such as the one labelled as
the “latent Dirichlet allocation” model (LDA) by [29] and [11] for use in the analysis of scientific
publications.

For the text component of the PNAS data: sub-populations correspond to latent “topics,”
indexed by k; subjects correspond to “documents,” indexed by n; J = 1, i.e., there is only one
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response variable that encodes which “word” in the vocabulary is chosen to fill a position in a
text of known length, so that j is omitted; positions in the text correspond to replicates, and
we have a different number of them for each document, i.e. we observe Rn positions filled with
words in the n-th document. The model assumes that each position in a document is filled
with a word that expresses a specific topic, so that each document is the expression of possibly
different topics. In order to do so, an explicit indicator variables zr

n is introduced for each
observed position in each document, which indicates the topic that expresses the corresponding
word. The function f(xr

n|βk) Pr (xr
n = 1|zr

n = k) = Multinomial (βk, 1), where βk is a random
vector the size of the vocabulary, say V , and

∑V
v=1 βk[v] = 1. A mixed-membership vector θn is

associated to the n-th document, which encode the topic proportions that inform the choice of
words in that document, and it is distributed according to Dα (i.e., a Dirichlet distribution). We
obtain equation 2 integrating out the topic indicator variable zr

n at the word level—the latent
indicators zr

n are distributed according to a Multinomial (θn, 1).

Most of our analyses also incorporate the references and we use the generalization of LDA
introduced in [19] for J = 2, i.e., words and references which are taken to be independent.

The issue of model choice we introduced in Section 1.1 translates into the choice about the
number of non-observable word and reference usage patterns (latent topics) that best describe
a collection of scientific publications.

3.2 Example 2: Grade of Membership Model

The “Grade of Membership,” or GoM, model is another specific model that can be cast in terms
of mixed-membership. This model was first introduced by Woodbury in the 1970s in the context
of medical diagnosis [46] and was developed further and elaborated upon in a series of papers
and in [27]. Erosheva [15] reformulated the GoM model as a HBMMM.

In the case of the disability survey data, there are no replications, i.e., Rn = 1. However we
consider several attributes of each american senior, i.e., J = 16 daily activities. Further, the
scalar parameter βjk is the probability of being disabled on the activity j for a complete member
of latent profile k, that is,

βjk = P (xj = 1|θk = 1).

Since we deal with binary data (individuals are either disabled or healthy), the probability
distribution f(xj|βjk) is a Bernoulli distribution with parameter βjk. Therefore, a complete
member n of latent profile k is disabled on the activity j, i.e., xnj = 1, with probability βjk.
In other words, introducing a profile indicator variable znj , we have P (xnj = 1|znj = k) = βjk.
Each individual n is characterized by a vector of membership scores θn = (θn1, . . . , θnK). We
assume that the membership scores θn follow the distribution Dα (for example a Dirichlet
distribution with parameter α = (α1, . . . , αk, . . . , αK). Note that the ratio αk/

∑

k αk represents
the proportion of the population that “belongs” to the k-th latent profile.

In this application, the issue of model choice translates into the choice about the number of
non-observable disability propensity profiles (latent profiles) that best describe the population
of American seniors.
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3.3 Relationship With Other Data Mining Methods

In order to situate HBMMMs in a familiar landscape, we discuss similarities with other unsu-
pervised data mining methods. In fact, in many applications including those we present in this
paper, HBMMMs are used in an unsupervised fashion, with no information about class labels.
Recall that in our problem we want to group observations about N subjects {x1:Rn

n }Nn=1 into,
say, K groups. K-means clustering, for example, searches for K centroids m1:K that minimize

MSE =
1

N

K
∑

k=1

N
∑

n=1

I
(

x1:Rn
n ∈ k

) ∥

∥x1:Rn
n −mk

∥

∥

2
,

where the centroids m1:K are centers of respective clusters in the sense of Euclidean norm.
Subjects have single group membership in K-means. In the mixture of Gaussians model, a
popular HBMMM that extends K-means, the MSE scoring criterion is substituted by the
likelihood

∑

n,k ℓ(n, k). Further, we have unknown mixed-membership vectors θn, that relax the
single membership of K-means. The connection is given by the fact that the mixed-membership
vectors θn, i.e., the class abundances, have a specific form in K-means, i.e., for the n-th subject
we can write

θn[k] =

{

1 if k = jn

0 otherwise,

where jn = arg min
{

ℓ(n, k) : k ∈ [1,K]
}

. In a general specification of HBMMMs we intro-
duce Dα distributed mixed-membership vectors, θn, also unknown. Further, in HBMMMs it is
possible to have a more complicated likelihood structure, which follows specifications in Section
3.

4 Strategies for Model Choice

Although there are pathological examples, where slightly different model specifications lead to
quite different analyses and choices of key parameters, in real situations we expect models with
similar probabilistic specifications to suggest roughly similar choices for the number of groups,
K.

In our applications to the study of scientific publications and disability survey data we explore
the issue of model choice by means of different criteria, of which two popular choices in the data
mining community: namely, cross-validation [24], and a Dirichlet process prior [7].

4.1 Choice Informed by the Ability to Predict

Cross-validation is a popular method to estimate the generalization error of a prediction rule
[24], and its advantages and flaws have been addressed by many in that context, e.g., [32]. More
recently, cross-validation has been adopted to inform the choice about the number groups and
associated patterns in HBMMMs [8, 45].

Guidelines for the proper use of cross-validation in choosing the optimal number of groups
K, however, has not been systematically explored. One of the goals of our case studies is that

9



of assessing to what extent cross-validation can be “trusted” to estimate the underlying number
of topics or disability profiles.

In particular, given the non-negligible influence of hyper-parameter estimates in the eval-
uation of the held-out likelihood, i.e., the likelihood on the testing set, we discover that it
is important not to bias the analysis with “bad estimates” of such parameters, or with arbi-
trary choices that are not justifiable using preliminary evidence, i.e., either in the form of prior
knowledge, or outcome of the analysis of training documents. To this extent, estimates with
“good statistical properties,” e.g., empirical Bayes or maximum likelihood estimates, should be
preferred to others [12].

4.2 The Dirichlet Process Prior

Positing a Dirichlet process prior on the number of latent topics is equivalent to assuming that
the number of latent topics grows with the log of the number of, say, documents or individuals
[20, 7]. This is an elegant model selection strategy in that the selection problem become part
of the model itself, although in practical situations it is not always possible to justify. A non-
parametric alternative to this strategy, recently proposed [28], uses the Dirichlet Process prior
is an infinite dimensional prior with a specific parametric form as a way to mix over choices
of K. This prior appears reasonable, however, for static analyses of scientific publications that
appear in a specific journal. Kuma et al. [26] specify toy models of evolution which justify the
scale-free nature of the relation between documents and topics using the Dirichlet process prior
for exploratory data analysis purposes.

4.3 Other Criteria for Model Choice

The statistical and data mining literatures contain many criteria and approaches to deal with the
issue of model choice, e.g., reversible jump MCMC techniques, Bayes factors and other marginal
likelihood methods, cross-validation, and penalized likelihood criteria such as the Bayesian In-
formation Criterion (BIC) [40, 34], the Akaike information criterion (AIC) [5], the deviance
information criterion (DIC) [41], minimum description length (MDL) [13]. See [23] for a review
of solutions in the data mining community.

AIC has a frequentist motivation and tends to pick models that are too large when then
number of parameters its large—it does not pay a high enough penalty. BIC and DIC have
Bayesian motivations and thus fit more naturally with the specifications in this paper. Neither
is truly Bayesian for HBMMMs; however DIC involves elements that can be computed directly
from MCMC calculations, and the variational approximation to the posterior (described in detail
below), allows us to integrate out the nuisance parameters in order to compute an approximation
to BIC for different values of K. Therefore, we explore the use of both DIC and BIC in connection
with the variational approximation for the the NLTCS disability data when we can look at both
criteria in action together.
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5 Case Study: PNAS Scientific Collection 1997–2001

As we mentioned in Section 2, our analyses are motivated by two recent analyses of extracts
of papers published in the Proceedings of the National Academy of Sciences (PNAS). Erosheva
et al [19, 18] and Griffiths & Steyvers [22] report on wildly different numbers of latent topics,
as few as 8 but perhaps a few dozen versus 300. We attempt to provide an explanation for
the divergent results here. In the process we explore how to perform the model selection for
hierarchical Bayesian models of mixed-membership. After choosing an “optimal” value for the
number of topics, K∗, and its associated words and references usage patterns, we also examine
the extent to which they correlate with the “actual” topic categories specified by the authors.

5.1 Modeling Text and References

In this section we introduce model specifications to analyze the collection of papers published in
PNAS, which were submitted by the respective authors to the section on biological sciences. All
our models can be subsumed into the general formulation of HBMMMs presented in Section 3.
Below, we organize them into finite and infinite mixture models, according to the dimensionality
of the prior distribution, Dα, posited at the latent variable level—assumption A3.

We characterize an article, or document, by the words in its abstract and the references in its
bibliography. Introducing some notation, we observe a collection of N documents, D1:N . The
n-th document is represented as Dn = (x1:R1n

1n , x1:R2n

2n ) where xr
1n is a word in the abstract and

xr
2n is a reference in the bibliography, and where R1n is the number of positions in the text of

the abstract occupied by a word, and R2n is the number of items in the bibliography occupied
by a reference. As in the latent Dirichlet allocation example of Section 3.1, positions (the order
of which does not matter), or spots, in the text of the abstracts are modeled as multinomial
random variables with V1 coordinates and unitary size parameter. That is, random variables
are associated with spots in the text and their values encode which word in the vocabulary
(containing V1 distinct words) occupies a specific spot. The number of spots is observed, R1n.
We model the references in a similar fashion. Each item in the bibliography is modeled as
multinomial random variables with V2 coordinates and unitary size parameter. Values of these
variables encode which reference in the set of known citations (V2 of them) was used as a specific
bibliography item. Again, the number of bibliography items is observed, R2n. That is, words
and references are vectors of size V1, respectively V2, with a single non-zero, unitary component.
We denote by xr

jn[v] the v-th component of xr
jn, for j = 1, 2.

Below, whenever the analysis refers to a single document, the document index n is omitted.

5.1.1 Finite Mixture: The Model

In the finite mixture case, we posit the following generative process for each document.

1. Sample the mixed-membership vector θ ∼ Dα.

2. For each of the R1 spots in the text of the abstract:
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2.1. Sample the topic indicator zr
1 |θ ∼Multinomial (θ, 1).2

2.2. Sample xr
1|zr

1 ∼Multinomial (β1z
r
1, 1).

3. For each of the R2 items in the bibliography:

3.1. Sample topic indicator zr
2|θ ∼Multinomial (θ, 1).

3.2. Sample xr
2|zr

2 ∼Multinomial (β2z
r
2, 1).

In this model, Dα is a Dirichlet(α1, . . . , αK) distribution with αk = α for all k, and (β1, β2) are
two matrices of size (V1×K) and (V2×K) respectively. The topic indicators, (zr

1 , z
r
1), are latent

vectors of with K coordinates, only one of which assumes a unitary value.

The hyper-parameters of this model are the symmetric Dirichlet parameter α, and the multi-
nomial parameters for words, (β1[·,k]), and references, (β2[·,k]), for each of the latent topics
k = 1, . . . ,K. That is, through pairs of corresponding columns of the two β matrices we define
a parametric representation of the K sub-populations (see assumption A1 in Section 3), which
we refer to as topics in this application. Technically, they are pairs of latent distributions over
the vocabulary and the set of known citations. In other words, element (v, k) of β1 encodes
the probability of occurrence of the v-th word in the vocabulary (containing V1 distinct words)
when the k-th topic is active, i.e., β1[v,k] = Pr (xr

1[v] = 1|zr
1[k] = 1), with the constraint that

∑

v β1[v,k] = 1 for each k. Similarly, element (v, k) of β2 encodes the probability of occurrence
of the v-th reference in the set of known citations (V2 of them) when the k-th topic is active.
Note that, through the latent topic indicators, we associate each spot in the text, i.e., each word
instance, with a latent topic. As a consequence, separate instances of the v-th vocabulary word
in the same abstract3 can be generated according to different topics.

In this finite mixture model, we assume that the number of latent topics is unknown but fixed
at K. Our goal is to find the optimal number of topics, K∗, which gives the best description of
the collection of scientific articles.

5.1.2 Infinite Mixture: The Model

In the infinite mixture case we posit a simpler and more traditional type of clustering model,
by assuming that each article Dn is generated by one single topic. However, in this case we do
not need to fix the unknown number of topics, K, prior to the analysis.

The infinite mixture model is based upon a more compact representation of a document,
Dn = (x1n, x2n), in terms of a vector of word counts, x1n =

∑R1
r=1 xr

1n, of size V1, and a

vector of reference counts, x2n =
∑R2

r=1 xr
2n, of size V2. In fact, given that word instances and

bibliography items in the same document cannot be generated by different topics, we do not
need to keep around the corresponding random quantities, (x1:R1

1n , x1:R2
2n ). Further, given that

each article can only be generated by a single topic, the mixed membership vectors, θ1:N , reduce

2In this application, we refer to the sub-populations of assumption A1 in Section 3 as “topics.” Despite the
suggestive semantics, topics are pairs of latent distributions over the vocabulary and the set of known citations,
from a statistical perspective, as defined by pairs of corresponding columns of the two β matrices.

3On the contrary, any given reference that was picked from the set of known citations typically appears as a
unique bibliography item. Thus there are no replicates of any given reference in the same bibliography.
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to single membership vectors. This means that each θn has a single unitary component, while
the remaining components equal zero. However, in the infinite mixture model we do not assume
a fixed dimensionality, K, for the membership vectors θ1:N . That is, prior to the analysis, the
number of sub-populations (see assumption A1 in Section 3) is unknown and possibly infinite.

It is more convenient to write the infinite mixture model as a generative process for the
whole collection of documents altogether, D1:N , rather than for a single document as in the
previous section. In order to promote clarity in this setting, we change the notation slightly.
Instead of working with the single membership vectors, θ1:N , it is more convenient to introduce
a latent topic indicator vector, c, whose n-th component, c[n], encodes the topic assignment of
the corresponding document, Dn. That is, c[n] = k if θn[k] = 1 for n = 1, . . . , N . Note that,
because of single membership, θn[k] = I(c[n] = k) for all k. Further, because of the restriction of
one topic per document, zr

1n[k] = zr
2n[k] = 1 at the same component k, for all word instances and

bibliography items r. This collection of equalities, for a given document Dn, is summarized and
simplified by writing c[n] = k.

We can now posit the generative process for the whole collection of documents, D1:N .

1. c ∼ Dα.

2. For each of the K distinct values of c:

2.1. β1[·,k] ∼ Dirichlet (η1[1], . . . , η1[V1]).

2.2. β2[·,k] ∼ Dirichlet (η2[1], . . . , η2[V2]).

3. For each of the N documents:

3.1. x1n|β1, c[n] ∼Multinomial (β1[·,c[n]], R1n).

3.2. x2n|β2, c[n] ∼Multinomial (β2[·,c[n]], R2n).

In this model, Dα is be the Dirichlet process prior with parameter α, introduced and discussed in
[6, 30]. The distribution Dα models the prior probabilities of topic assignment for the collection of
documents. In particular, for the n-th document, given the set of assignments for the remaining
documents, c[−n], this prior puts on the k-th topic (out of K distinct topic assignment observed
in c[−n]) a mass that is proportional to the number of documents associated with it. It also puts
prior mass on a new, (K + 1)-th topic, which is distinct from the topic assignments (1, . . . ,K)
observed in c[−n]. That is, Dα entails prior probabilities for each component of c as follows,

Pr
(

c[n] = k
∣

∣ c[−n]

)







m(−n,k)
N−1+α

if m(−n, k) > 0
α

N−1+α
if k = K(−n) + 1

0 otherwise,

(5)

where c[−n] denotes the latent topic indicator vector without the n-th component; m(−n, k) is
the number of documents that are associated with the k-th topic, other than the n-th document,
i.e., m(−n, k) =

∑N
m=1 I(c[m] = k,m 6= n); and K(−n) is the number of observed, distinct topics

that are associated with at least one document, other than the n-th document.

The hyper-parameters of this model are the scaling parameter of the Dirichlet process prior,
α, and the two vectors of Dirichlet parameters, (η1, η2), that control the latent topics of words
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and references, respectively. Note that the topics, i.e., latent pairs of distributions, are not hyper-
parameters of the model in our specification of the infinite mixture model. Rather, we smooth
the topics by positing a pair of Dirichlet priors on them, and the corresponding parameter vectors
(η1, η2) become the hyper-parameters at the top of the model hierarchy. In our implementation
we assume symmetric Dirichlet priors for the topics, such that η1[k] = η1 scalar, and η2[k] = η2

scalar, for all components k = 1, . . . ,K.

In this model, we assume that the number of latent topics, K, is unknown and possibly
infinite, through the prior for c, Dα. In order to find the number of topics that best describes
the collection of scientific articles, we study the posterior distribution of c.

5.2 Inference

In this section we develop posterior inference for both the finite and the infinite mixture models
above. In particular, we use variational methods for the finite mixture model and Monte Carlo
Markov chain (MCMC) methods for the infinite mixture model.

5.2.1 Finite Mixture: Inference

In the finite mixture case, we assume the number of topics (K < ∞) is fixed during inference.
Unfortunately, the likelihood of a document according to this model,

p
(

x1:R1
1 , x1:R2

2

∣

∣ α, β1, β2

)

=

∫

(

R1
∏

r=1

K
∑

k=1

V1
∏

v=1

(θkβ1[v,k])
xr
1[v]

)(

R2
∏

r=1

K
∑

k=1

V2
∏

v=1

(θkβ2[v,k])
xr
2[v]

)

Dα(dθ), (6)

does not have a closed form solution. We need the likelihood to compute the joint posterior
distribution of the mixed-membership scores and the topic and reference latent indicator vectors,

p
(

θ, z1:R1
1 , z1:R2

2

∣

∣ x1:R1
1 , x1:R2

2 , α, β1, β2

)

=
p
(

θ, z1:R1
1 , z1:R2

2 , x1:R1
1 , x1:R2

2

∣

∣ α, β1, β2

)

p
(

x1:R1
1 , x1:R2

2

∣

∣ α, β1, β2

) , (7)

at the denominator of the right hand side of Equation 7. The variational method prescribes
the use of a mean-field approximation to the posterior distribution in Equation 7, described
below. Such an approximation leads to a lower bound for the likelihood of a document, which
depends upon an set of free parameters (γ, φ1:R1

1 , φ1:R2
2 ). These free parameters are introduced

in the mean-field approximation, and are set to minimize the Kullback-Leibler (KL henceforth)
divergence between true and approximate posteriors.

The “variational EM” algorithm we develop for performing posterior inference, see Figure
2, is then an approximate EM algorithm. During the M step, we maximize the lower bound
for the likelihood over the hyper-parameters of the model, (α, β1, β2), to obtain to (pseudo)
maximum likelihood estimates. During the E step, we tighten the lower bound for the likelihood
by minimizing the KL divergence between the true and the approximate posteriors over the free
parameters, (γ, φ1:R1

1 , φ1:R2
2 ), given the most recent estimates for the hyper-parameters.

In the M step, we update the hyper-parameters of the model, (α, β1, β2) by maximizing the
tight lower bound for the likelihood over such hyper-parameters. Given the most recent updates
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Variational EM
(

{x1:R1
1n , x1:R2

2n }Nn=1

)

1. initialize α[k] := 1/K for all k

2. initialize β1[kv] := 1/V1 for all v and k

3. initialize β2[kv] := 1/V2 for all v and k

4. do

5. for n = 1 to N

6. (γn, φ1:R1
1n , φ1:R2

2n )←−[ Mean-Field Lower-Bound (x1:R1
1n , x1:R2

2n )

7. β1[vk] ∝
∑N

n=1

∑R1
r=1 φr

1n[k]x
r
1n[v] for all v and k

8. β2[vk] ∝
∑N

n=1

∑R2
r=1 φr

2n[k]x
r
2n[v] for all v and k

9. normalize the columns of β1 and β2 to sum to 1
10. find pseudo MLE for α using Newton-Raphson—see main text
11. until convergence
12. return (α, β1, β2)

Figure 2: The variational EM algorithm to solve the Bayes problem in finite mixture model of
text and references, described in Section 5.1.1. Note, the M step updates (steps 7. and 8.) are
performed incrementally in our implementation, within step 6. of the algorithm outlined above,
thus speeding up the overall computation.

of the free parameters the bound depends on, (γ, φ1:R1
1 , φ1:R2

2 ). This leads to the following
(pseudo) maximum likelihood estimates for the parameters:

β1[vk] ∝
N
∑

n=1

R1
∑

r=1

φr
1n[k]x

r
1n[v],

β2[vk] ∝
N
∑

n=1

R2
∑

r=1

φr
2n[k]x

r
2n[v],

where n is the document index, introduced above. The document index is necessary as we
make use of the counts about specific words and references observed in all documents in order
to estimate the corresponding conditional probabilities of occurrence, i.e., the latent topics.
Unfortunately a closed form solution for the (pseudo) maximum likelihood estimates of α does
not exist. We can produce a method that is linear in time by using Newton-Raphson, with the
following gradient and Hessian for the log-likelihood

∂L

∂α[k]
= N

(

Ψ
(

K
∑

k=1

α[k]

)

−Ψ(α[k])

)

+

N
∑

n=1

(

Ψ(γn[k])−Ψ
(

K
∑

k=1

γn[k]

)

)

, (8)

∂L

∂α[k1]α[k2]
= N

(

δk1=k2 ·Ψ′(α[k1])−Ψ′
(

K
∑

k2=1

α[k2]

)

)

. (9)

The variational EM algorithm we is summarized in Figure 2.

In the approximate E step we update the free parameters for the mean-field approximation
of the posterior distribution in Equation 7, (γ, φ1:R1

1 , φ1:R2
2 ), given the most recent estimates of
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Mean-Field Lower-Bound
(

x1:R1
1 , x1:R2

2

)

1. initialize φr
1[k] := 1/K for all r and k

2. initialize φr
2[k] := 1/K for all r and k

3. initialize γ[k] := α[k] + R1/K + R2/K for all k

4. do

5. for r = 1 to R1

6. for k = 1 to K

7. φr
1[k] ∝ β1[vk] × exp

(

Ψ(γ[k])−Ψ
(
∑K

k=1 γ[k]

)

)

8. normalize φr
1 to sum to 1

9. for r = 1 to R2

10. for k = 1 to K

11. φr
2[k] ∝ β2[vk] × exp

(

Ψ(γ[k])−Ψ
(
∑K

k=1 γ[k]

)

)

12. normalize φr
2 to sum to 1

13. γ = α +
∑R1

r=1 φr
1 +

∑R2
r=1 φr

2

14. until convergence

15. return (γ, φ1:R1
1 , φ1:R2

2 )

Figure 3: The mean-field approximation to the likelihood for the finite mixture model of text
and references, described in Section 5.1.1.

the hyper-parameters of the model, (α, β1, β2), as follows

φr
1[k] ∝

V1
∏

v=1

[

β1[vk] × exp

(

Ψ(γ[k])−Ψ
(

K
∑

k=1

γ[k]

)

)

]xr
1[v]

, (10)

φr
2[k] ∝

V2
∏

v=1

[

β2[vk] × exp

(

Ψ(γ[k])−Ψ
(

K
∑

k=1

γ[k]

)

)

]xr
2[v]

, (11)

γ[k] = αk +

R1
∑

r=1

φr
1[k] +

R2
∑

r=1

φr
2[k]. (12)

This minimizes the posterior KL divergence between true and approximate posteriors, at the
document level, and leads to a new lower bound for the likelihood of the collection of documents.
Note that the products over words and references in Equations 10 and 11 serve the purpose of
selecting the correct probabilities of occurrence in the respective vocabularies, which correspond
to the word and reference observed at a specific position, (r1, r2), in the document. That is,
the updates of the free parameters (φr1

1[k], φ
r2

2[k]) only depend on the probabilities (β1[v1k], β1[v2k]),

where v1 := {v ∈ [1, V1] s.t. xr1

1[v] = 1} and v2 := {v ∈ [1, V2] s.t. xr2

2[v] = 1}. Using this notation,
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the updates simplify to

φr1

1[k] ∝ β1[v1k] × exp

(

Ψ(γ[k])−Ψ
(

K
∑

k=1

γ[k]

)

)

,

φr2

2[k] ∝ β2[v2k] × exp

(

Ψ(γ[k])−Ψ
(

K
∑

k=1

γ[k]

)

)

.

The mean-field approximation to the likelihood we described above is summarized in Figure 3.

In order to develop the mean-field approximation for the posterior distribution in Equation
7 we used in the E step above, we posit N independent fully-factorized joint distributions over
the latent variables, one for each document,

q
(

θ, z1:R1
1 , z1:R2

2

∣

∣ γ, φ1:R1
1 , φ1:R2

2

)

= q
(

θ|γ
)

(

R1
∏

r1=1

q
(

z
(r1)
1

∣

∣ φ
(r1)
1

)

R2
∏

r2=1

q
(

z
(r2)
2

∣

∣ φ
(r2)
2

)

)

,

which depends on the set of previously mentioned free parameters, (γ, φ1:R1
1 , φ1:R2

2 ). The mean-
field approximation consists in finding an approximate posterior distribution,

p̃
(

θ, z1:R1
1 , z1:R2

2

∣

∣ γ̃, z̃1:R1
1 , z̃1:R2

2 , α, β1, β2

)

,

where the conditioning on the data is now obtained indirectly, trough the free parameters,

γ̃ = γ̃
(

x1:R1
1 , x1:R2

2

)

,

z̃1:R1
1 = z̃1:R1

1

(

x1:R1
1 , x1:R2

2

)

,

z̃1:R2
2 = z̃1:R1

2

(

x1:R1
1 , x1:R2

2

)

The factorized distribution leads to a lower bound for the likelihood; in fact it is possible to
find a closed form solution to the integral in Equation 6 by integrating the latent variables
out with respect to the factorized distribution. An approximate posterior, p̃, is computed by
substituting the lower bound for the likelihood at the denominator of Equation 7. The mean-
field approximation in then obtained by minimizing the Kullback-Leibler divergence between
the true and the approximate posteriors, over the free parameters.

The mean-field approximation has been used in many applications over the years [38, 39,
33, 9]. Intuitively, the approximation aims at reducing a complex problem into a simpler one
by “decoupling the degrees of freedom in the original problem.” Such decoupling is typically
obtained via an expansion that involves additional, free parameters that are problem dependent,
e.g., {γn, φ1:R1

1n , φ1:R2
2n }Nn=1 in our model above. A thorough treatment of such methods, which

focus on applications to statistics and machine learning, is given in [25, 47, 44]. We have adapted
these methods for other applications in work we hope to report on in the near future.

5.2.2 Infinite Mixture: Inference

In the infinite mixture case, we assume the total number of topics, K, to be unknown and
possibly infinite. The posterior distribution of c, which is the goal of the posterior inference in
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this model, cannot be derived in closed form. However, the component-specific full conditional
distributions, i.e., Pr (c[n]|c[−n]) for n = 1, . . . , N , are known up to a normalizing constant.
Therefore we can explore the desired posterior distribution of the vector c through MCMC
sampling methods.

Following Algorithm 3 in [30], we derive the full conditional distribution of the topic assign-
ment vector. The full conditional probability that document Dn belongs in an existing topic k,
given all documents, D, and the topic assignment of all other documents, c[−n], is given by

Pr (c[n] = k|D, c[−n])

∝ m(−n, k)

N − 1 + α

×
(

R1n

x1n

)

Γ(η1 +
∑

v

∑

i6=n:ci=k x1i[v])
∏

v Γ(η1/V1 +
∑

i6=n:ci=k x1i[v])

∏

v Γ(x1n[v] + η1/V1 +
∑

i6=n:ci=k x1i[v])

Γ(
∑

v x1n[v] + η1 +
∑

v

∑

i6=n:ci=k x1i[v])

×
(

R2n

x2n

)

Γ(η2 +
∑

v

∑

i6=n:ci=k x2i[v])
∏

v Γ(η2/V2 +
∑

i6=n:ci=k x2i[v])

∏

v Γ(x2n[v] + η2/V2 +
∑

i6=n:ci=k x2i[v])

Γ(
∑

v x2n[v] + η2 +
∑

v

∑

i6=n:ci=k x2i[v])
,(13)

where c[−n] is the topic assignment vector for all documents other than Dn. The full conditional
probability that document Dn belongs to a topic which no other Dj belongs to is the following:

Pr(c[n] 6= c[i] ∀ i 6= n|D, c[−n]) ∝
α

N − 1 + α

×
(

R1n

x1n

)

Γ(η1)
∏

v Γ(x1n[v] + η1/V1)

Γ(η1/V1)V1Γ(
∑

v x1n[v] + η1)

×
(

R2n

x2n

)

Γ(η2)
∏

v Γ(x2n[v] + η2/V2)

Γ(η2/V2)V2Γ(
∑

v x2n[v] + η2)
. (14)

The sparseness of D and symmetry of the Dirichlet prior leads to a forms of Equations 13 and
14 that are more quickly computed.

The parameters of the model estimated in this way are the vector c of topic assignments and
the total number of topics, K. The posterior distributions of c and K can be found using a
Gibbs sampler with these full conditional distribution as shown in Figure 4.

In order to asses convergence of the Markov chain, we examine the total number of topics
(which varies by Gibbs sample) and consider the Markov chain converged when the number
of topics has converged. Convergence was diagnosed when several independent chains sampled
close values of K. We started chains with 10, 25, 40, and 11988 topics and they converged after
approximately 30 iterations. Thus we are reasonably confident of convergence despite the small
number of iterations because of the diversity of chain starting values.

In the estimation of the posterior distribution of c and K, there are two hyperparameters
which must be chosen. The prior distribution on c depends on the value of α; larger values of
α greater than one encourage more groups while values of α smaller than one discourages new
groups. We interpret α as the number of documents that we a priori believe belong in a new
topic started by one document. However, once an document has started a new group, other
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MCMC
(

{x1n, x2n}Nn=1

)

1. initialize K between 1 and N
2. for k = 1 to (K − 1)
3. initialize c[n] := k for n = (k − 1)× ⌊N/K⌋+ 1 to k × ⌊N/K⌋
4. initialize c[n] := K for n = (K − 1)× ⌊N/K⌋ + 1 to N

5. do

6. for n = 1 to N
7. sample c[n] from a Multinomial with probabilities from Eq. 13 and Eq. 14

8. update K := maxn(c[n])

9. until 50 iterations after convergence (see discussion)
10. return posterior distribution of (c,K)

Figure 4: The MCMC algorithm to find the posterior distribution of classification in the infinite
mixture model of text and references, described in Section 5.1.2.

documents will be less likely to join that group based on its small size. Therefore, α = 1 is used
here as the standard value.

The posterior distribution of c also depends, through β, on the η parameters. This is the
Dirichlet prior on the probability vector over words or references for each topic. A value of η
smaller than V , the vocabulary size, implies a prior belief that the word distributions will be
highly skewed (a few likely words and many words with almost no probability of use). These
values of η cause all documents to appear in one large group, K = 1. A value of η larger than
V implies a prior belief that all words are equally likely to be used in a given topic. Here, we
take η1 = 1000 × V1 and η2 = 1000 × V2 as values that encourages a range of values of K.

5.3 Empirical Results

In Figure 5, we give the log-likelihood obtained for the four finite mixture models (at K =
5, 10, · · · , 50, 100, 200, 300)).

We fit six models for latent topics in the PNAS dataset: using words alone or with references,
finite or infinite mixture models, and (for finite mixture) fitted or fixed Dirichlet parameter α.
The plots of the log likelihood in Figure 5 suggest we choose a number of topics between 20 and
40 whether words or words and references are used. The infinite model generates a posterior
distribution for the number of topics, K, given the data. Figure 6 shows the posterior distribution
ranges from 23 to 33 profiles. We expect that the infinite model will require more topics than
the finite mixed-membership because it is a hard clustering.

By choosing K = 20 topics, we can meaningfully interpret all of the word and reference
usage patterns. We then fit the data with a 20 topics model for the finite mixture model using
words and references and focused on the interpretation of the 20 topics. In Table 1, we list 12
high-probability words from these topics after filtering out the stop words. Table 2 shows the 5
references with the highest probability for 6 of the topics.
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Figure 5: Left Panel: Log-likelihood (5 fold cv) for K = 5, . . . , 50, 75, 100, 200, 300 topics. We
plot: text only, α fitted (solid line); text only, α fixed (dashed line). Right Panel: Log-
likelihood (5 fold cv) for K = 5, . . . , 50, 100 topics. We plot: text and references, α fitted (solid
line); text and references, α fixed (dotted line).

Figure 6: Posterior distribution of K for the PNAS scientific collection corresponding to the
infinite mixture models of text (left panel) and of text and references (right panel).
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Figure 7: The average membership in the 20 latent topics (columns) for articles in thirteen of
the PNAS editorial categories (rows). Darker shading indicates higher membership of articles
submitted to a specific PNAS editorial category in the given latent topic and white space in-
dicates average membership of less than 10%. Note that the rows sum to 100% and therefore
darker topics show concentration of membership and imply sparser membership in the remaining
topics. These 20 latent topics were created using the four finite mixture models with words only
(1st, 2nd) or words and references (3rd, 4th) and α estimated (1st, 3rd) or fixed (2nd, 4th).
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Table 1: Word usage patterns corresponding to the model of text & references, with K = 20
topics.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
gene kinase cells cortex species
genes activation virus brain evolution

sequence receptor gene visual population
chromosome protein expression neurons populations

analysis signaling human memory genetic
genome alpha viral activity selection

sequences phosphorylation infection cortical data
expression beta cell learning different

human activated infected functional evolutionary
dna tyrosine vector retinal number

number activity protein response variation
identified signal vectors results phylogenetic
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
enzyeme plants protein protein cells
reaction plant rna model cell

ph acid proteins folding tumor
activity gene yeast state apoptosis

site expression mrna energy cancer
transfer arabidopsis activity time p53

mu activity trna structure growth
state levels translation single human
rate cox vitro molecules tumors

active mutant splicing fluorescence death
oxygen light complex force induced
electron biosynthesis gene cdata expression
Topic 11 Topic 12 Topic 13 Topic 14 Topic 15

transcription dna cells protein ca2+
gene rna cell membrane channel

expression repair expression proteins channels
promoter strand development atp receptor
binding base expressed complex alpha
beta polymerase gene binding cells

transcriptional recombination differentiation cell neurons
factor replication growth actin receptors
protein single embryonic beta synaptic

dna site genes transport calcium
genes stranded drosophila cells release

activation cdata embryos nuclear cell
Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
peptide cells domain mice beta
binding cell protein type levels
peptides il binding wild increased
protein hiv terminal mutant insulin
amino antigen structure gene receptor
site immune proteins deficient expression
acid specific domains alpha induced

proteins gamma residues normal mice
affinity cd4 amino mutation rats
specific class beta mutations treatment
activity mice sequence mouse brain
active response region transgenic effects
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Table 2: References usage patterns for 6 of the 20 topics corresponding to the model of text &
references, with K = 20 topics.

Author Journal

Topic 2
THOMPSON,CB SCIENCE, 1995
XIA,ZG SCIENCE, 1995
DARNELL,JE SCIENCE, 1994
ZOU,H CELL, 1997
MUZIO,M CELL, 1996
Topic 5
SAMBROOK,J MOL. CLONING. LAB. MANU., 1989
ALTSCHUL,SF J. MOL. BIOL., 1990
EISEN,MB P. NATL. ACAD. SCI. USA, 1998
ALTSCHUL,SF NUCLEIC. ACIDS. RES, 1997
THOMPSON,JD NUCLEIC. ACIDS. RES, 1994
Topic 7
SAMBROOK,J MOL. CLONING. LAB. MANU,1989
THOMPSON,JD NUCLEIC. ACIDS. RES,1994
ALTSCHUL,SF J. MOL. BIOL,1990
SAITOU,N MOL. BIOL. EVOL,1987
ALTSCHUL,SF NUCLEIC. ACIDS. RES,1997
Topic 8
SAMBROOK,J MOL. CLONING. LAB. MANU,1989
KIM,NW SCIENCE, 1994
BODNAR,AG SCIENCE, 1998
BRADFORD,MM ANAL. BIOCHEM., 1976
FISCHER,U CELL, 1995
Topic 17
SHERRINGTON,R NATURE,1995
HO,DD NATURE,1995
SCHEUNER,D NAT. MED.,1996
THINAKARAN,G NEURON,1996
WEI,X NATURE,1995
Topic 20
CHOMCZYNSKI,P ANAL. BIOCHEM., 1987
BRADFORD,MM ANAL. BIOCHEM., 1976
KUIPER,GGJM P. NATL. ACAD. SCI. USA, 1996
MONCADA,S PHARMACOLREV, 1991
KUIPER,GG ENDOCRINOLOGY, 1998
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Using both tables, we offer the following interpretations of topics:

• Topics 1 and 12 focus on nuclear activity (genetic) and (repair/replication).

• Topic 2 concerns protein regulation and signal transduction.

• Two topics are associated with the study of HIV and immune responses: topic 3 is related
to virus treatment and topic 17 concerns HIV progression.

• Two topics relate to the study of the brain and neurons: topic 4 (behavioral) and topic 15
(electrical excitability of neuronal membranes).

• Topic 5 is about population genetics and phylogenetics.

• Topic 7 is related to plant biology.

• Two topics deal with human medicine: topic 10 with cancer and topic 20 with diabetes
and heart disease.

• Topic 13 relates to developmental biology.

• Topic 14 concerns cell biology.

• Topic 19 focus on experiments on transgenic or inbred mutant mice.

• Several topics are related to protein studies, e.g., topic 9 (protein structure and folding),
topic 11 (protein regulation by transcription binding factors), and topic 18 (protein con-
servation comparisons).

• Topics 6, 8, and 16 relate to biochemistry.

These labels for the topics are primarily convenience, but they do highlight some of the
overlap between the PNAS sections (Plant Biology and Developmental Biology) and the latent
topics (7 and 13). However, many plant biologists may do molecular biology in their current
work. We can also see by examining the topics that small sections such as Anthropology do
not emerge as topics and broad sections such as Medical Science and Biochemistry have distinct
subtopics within them. This also suggests special treatment for general sections such as Applied
Biology and cutting-edge interdisciplinary papers when evaluating the classification effectiveness
of a model.

To summarize the distribution of latent aspects over distributions, we provide graphical
representations of the distribution of latent topics for each of the PNAS topics in Figure 7. The
third figure represents the model used for Tables 1 and 2. The two figures on the right represent
models where the α parameter of the Dirichlet prior over topics is fixed. These two models are
less sparse than the corresponding models with α fit to the data. For twenty latent topics, we
fix α = 50/20 = 2.5 > 1 and this means each latent topic is expected to be present in each
document and a priori we expect equal membership in each topic. By contrast the fitted values
of α are less than one lead to models that expect articles to have high membership in a small
number of topics. See Section 5.4 for further consequences of these assumptions. The PNAS
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Figure 8: Left: 2D symmetric Dirichlet densities underlying mixed-membership vectors θ =
(θ1, θ2), with parameter α = 4 > 1 (solid, black line) and with parameter α = 0.25 < 1 (dashed,
red line). Right: held-out log-likelihood for the simulation experiments described in the text.
The solid, black line corresponds to the strategy of fixing α = 50/K, whereas the dashed, red
line corresponds to the strategy of fitting α via empirical Bayes. K∗ is denoted with an asterisk.

topics tend to have a few latent topics highly represented when α is fit and low to moderate
representation in all topics when α is fixed (as seen by white/light colored rows).

Further examining Figure 7, note that topic 1, identified with genetic activity in the nucleus,
was highly represented in articles from Genetics, Evolution, and Microbiology. Also note that
nearly all of the PNAS classifications are represented by several word and reference usage pat-
terns in all of the models. This highlights the distinction between the PNAS topics and the
discovered latent topics. The assigned topics used in PNAS follow the structure of the historical
development of Biological Sciences and the divisions/departmental structures of many medical
schools and universities. These latent topics, however, are structured around the current inter-
est of Biological Sciences. Figure 7 also shows that there is a lot of hope for collaboration and
interest between separate fields which are researching the same ideas.

As we saw in Figure 5, the held-out log likelihood plot corresponding to five-fold cross vali-
dation suggest a number between 20 and 40 topics for the finite mixture model. Othe analyses
with finite finite mixture with words and references supports support values towards the lower
end of this range, i.e., K = 20, more than other choices. This is also true in the posterior
distribution of K for the infinite mixture model. We fixed α = 50/K following the choice in [22]
and estimated α from the data,. This produced a similar conclusion. While [22] found posterior
evidence for nearly 300 topics, a number on the order of 20 or 30 provides a far better fit to the
data, assessed robustly by multiple criteria and specifications. Moreover, we find this simpler
more interpretable in a meaningful way that is not possible with 300 topics.

5.4 Evidence from a Simulation Study: A Practice to Avoid

To conclude, with the aim of highlighting the dangers of fixing the hyper-parameters according
to some ad-hoc strategy that is not supported by the data, e.g., fixing α = 50/K in the models
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of the previous section, we report some anecdotal evidence we gathered from synthetic data. We
simulated a set of 3,000 documents according to the finite mixture model of text only described in
Section 5.1, with K∗ = 15 and a vocabulary of size 50. We then fitted the correct finite mixture
model on a grid for K = 5, 10, 45 that included the true underlying number of groups and
associated patterns, using a five-fold cross-validation scheme. In a first batch of experiments
we fitted alpha using empirical Bayes [12], whereas in a second batch of experiments we set
α = 50/K, following the analysis in [22]. The held-out log-likelihood profiles are reported in
Figure 8.

In this controlled experiment, the optimal number of non-observable groups is K∗ = 15. This
implies a value of α = 50

15 = 3.33 > 1 for the ad-hoc strategy, whereas α̂ = 0.052 < 1 according to
the empirical Bayes strategy. Intuitively, the fact that α > 1 has a disrupting effect on the model
fit: each topic is expected to be present in each document, or in other words each document
is expected to belong equally to each group/topic, rather than only to only a few of them, as
it is the case when α < 1. As an immediate consequence, the estimates of the components of
mixed-membership vectors, {θnk}, tend to be diffuse, rather than sharply peaked, as we would
expect in text mining applications. We can observe this effect, for example, in Figure 7, where
the plots in the right column display latent topics that are more “diffuse” than those estimated
by fitting the hyper-parameter α with maximum likelihood as well. Further, in our simulation,
setting the hyper-paramter α to a value greater than one when the data supports values in a
dramatically different range, e.g., 0.01 < α < 0.1, ultimately bias the estimation of the number
of latent groups. This effect can be observed by looking at the entries in Figure 7, where diffuse
estimates are found corresponding to the strategy of fixing α. Further, Figure 8 shows that the
empirical Bayes strategy correctly recovers K∗ = 15, whereas the ad-hoc strategy finds K∗ = 20.

Our experiments in a controlled setting suggest that it is desirable not to fix the hyper-
parameters, e.g., the non-observable category abundances α, according to ad-hoc strategies,
unless such strategies are supported by previous analyses. Ad-hoc strategies will affect inference
about the number of non-observable groups and associated patterns in non-controllable ways,
and ultimately bias the analysis of data.

6 Case Study: Disability Profiles of American Seniors

As we mentioned in Section 2, the analysis we present here complements the analyses of the data
from the National Long Term Care Survey (NLTCS) presented in Erosheva [15] and Erosheva
and Fienberg [18]. In particular, [15] considers finite mixture models that feature up to five
latent disability profiles and concludes that the model with four profiles is the most appropriate
to describe the NLTCS data. In this section, we explore a larger set of finite mixture models
that feature up to ten latent disability profiles, and we also present a nonparametric model that
does not fix the number of profiles prior to the analysis.4

As in the previous case study, the focus on the analysis is on the selection of the number of
latent disability profiles, i.e., on the selection of the model, which best describes the data.

4Rather, the nonparametric model implicitly encodes a prior on the number of latent profiles such that K ≈

ln(N), where N is the number of seniors in the sample. In the NLTCS data, N = 21, 574 and ln(N) ≈ 10.
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6.1 Modeling Disability

In this section we introduce model specifications to analyze the sample of American seniors
included in the NLTC panel survey. For our purposes it will be sufficient to ignore the temporal
dimension of the data collection—we refer to [14] for a longitudinal analysis. All our models
can be subsumed into the general formulation of HBMMMs presented in Section 3. Below, we
organize them into finite and infinite mixture models, as before, according to the dimensionality
of the prior distribution, Dα, posited at the latent variable level—assumption A3.

We characterize an American senior by a set of responses, xjn for j = 1, . . . , J , which were
measured through a questionnaire. In our analysis we selected J = 16 binary responses that
encode answers to questions about the ability to perform six activities of daily living (ADL)
and ten instrumental activities of daily living (IADL). The j-th response, xjn, is recorded as
zero if the n-th individual does not have problems performing the j-th activity (he is considered
healthy, to that extent, for the purpose the survey), whereas it is recorded as one if the n-th
individual has problems performing the j-th activity (an individual is considered disabled to
that extent for the purpose the survey).

6.1.1 Finite Mixture: The Model

To carry out the analysis of the NLTCS data in the finite mixture setting we use the GoM model
of Section 3.2, which posits the following generative process for the n-th individual.

1. Sample θn ∼ Dα.

2. For each of the J responses

2.1. Sample zjn|θn ∼Multinomial (θn, 1).

2.2. Sample xjn|zjn ∼ Bernoulli (βzjn).

Here, we take Dα to be a Dirichlet distribution with hyper-parameter α = (α1, . . . , αK). Note
that this is not the symmetric distribution we used in the previous case study, in the finite
setting. In this model, β is a matrix that encodes the probability of being disabled with respect
to each one of the 16 activities for seniors who display disability characteristics specific to each
of the K latent profiles. That is, if we denote as before the latent profile indicator vector with
zjn, then β[jk] = P (xjn = 1|zjn[k] = 1) is the probability of being disabled with respect to the
j-th activity for a senior who “belongs” completely to the k-th latent profile. Note that in this
model there are no constraints on the sum of the total probability of having being disabled
given any specific profile. For example,

∑J
j=1 β[jk] is not necessarily one as in the model of

Section 5.2.15. The hyper-parameters of this model are α and β. In Section 6.2.1 we develop a
variational approximation to perform posterior inference on such hyper-parameters, and on the
latent variables θn and zjn for all j’s and n’s.

In our analysis, we also consider a fully Bayesian version of the GoM model, following [15],
which posits the following generative process for all N individuals in the survey.

5Note another subtle difference from the generative process of Section 5.2.1. In this model we loop over 1
replicate of each of the J responses observed for the n-th American senior, whereas in the previous model we loop
over R1 word instances and R2 bibliography items observed in the n-th document.
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1. Sample ξ ∼ Dα

2. Sample α0 ∼ Gamma (τ1, τ2)

3. Sample β[jk] ∼ Beta (σ1, σ2) for all j and k

4. For each of the N individuals

4.1. Sample θn ∼ Dirichlet (α0ξ[1], . . . , α0ξ[K]).

4.2. For each of the J responses

4.2.1. Sample zjn|θn ∼Multinomial (θn, 1)

4.2.2. Sample xjn|zjn ∼ Bernoulli (βzjn)

In this fully Bayesian setting we fix the hyper-parameter for convenience. According to our
model specifications Dα is a symmetric Dirichlet distribution with fixed hyper-parameter α1 =
· · · = αK = 1. The k-th component of ξ, ξ[k], represents the proportion of the seniors in the
survey who express traits of the k-th latent disability profile. Further, we fix a diffuse Gamma
distribution, τ1 = 2 and τ2 = 10, to control for the tails of the Dirichlet distribution of the mixed
membership vectors, θn. The elements of β are sampled from a symmetric Beta distribution
with fixed hyper-parameter σ1 = σ2 = 1. Note that a symmetric Beta sampling scheme with
unitary parameter is equivalent to a Uniform sampling scheme on [0, 1].

In both of the finite mixture models we presented in this section, we assume that the number
of latent profiles is unknown but fixed at K. Our goal is to find the number of latent disability
profiles, K∗, which gives the best description of the population of seniors.

6.1.2 Infinite Mixture: The Model

In the infinite setting we do not fix the number of sub-populations K underlying the population
of American seniors surveyed prior to the analysis. As in the previous case study, the mixed
membership vectors θ1:N reduce to single membership vectors. We denote membership with c,
where c[n] = k indicates that θn[k] = 1. We posit the following generative process.

1. Sample c ∼ Dα

2. For each of the K distinct values of c

2.1. Sample β[jk] ∼ Beta (τ1, τ2) for all j

3. For each of the N seniors

3.1. For each of the J responses

3.1.1. sample xjn|β[jc[n]] ∼ Bernoulli
(

β[jc[n]]

)

Here Dα is the Dirichlet process prior described in Section 5.1.2. In our implementation, we
specify a symmetric Beta distribution for the disability probabilities, βkj , with τ1 = τ2 = τ .
Further, we fix the hyper-parameter of the Dirichlet process prior Dα at α = 1, which encodes
“indifference” toward additional groups.
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In this model, we assume that the number of latent disability profiles, K, is unknown and
possibly infinite, through the prior for c, Dα. In order to find the number of profiles that best
describes the population of seniors, we study the posterior distribution of c.

6.2 Inference

In this section we develop posterior inference for both specifications of the finite mixture model,
and for the infinite mixture model above. In particular, we use variational methods for the “ba-
sic” finite mixture model and Monte Carlo Markov chain (MCMC) methods for “fully Bayesian”
finite mixture models and for the infinite mixture model.

6.2.1 Finite Mixture: Inference

A—The Variational approximation for the “basic” model. As in Section 5.1.1, in the
finite mixture case, the coupling between the mixed-membership scores, θ1:N , and the condi-
tional disability probabilities given profile, β, results in an intractable likelihood. Likewise, the
algorithm that leads to the mean-field solution to the Bayes problem is an variational EM algo-
rithm. This is an approximate EM algorithm, which involves evaluating a lower bound for the
likelihood that depends on additional free parameters.

In the M step we maximize such lower bound with respect to the hyper-parameters of the
model, (α, β), given the updates of the free parameters, (γn, φ1n:Jn) for the n-th individual. We
then obtain the (pseudo) maximum likelihood estimates for the hyper-parameters as follows.

β[jk] ∝
N
∑

n=1

φjn[k]xjn,

where n is the index that runs over the N individuals in the sample. The (pseudo) maximum
likelihood estimates for α are derived using the Newton-Raphson algorithm, with gradient and
Hessian given in Equations 8 and 9.

In the approximate E step we update the free parameters corresponding to the n-th individual,
(γn, φ1n:Jn), given the update estimates for the parameters of the model, (α, β), as follows.

φj[k] ∝ β
xj

j[k](1− β[jk])
1−xj ×

(

Ψ(γ[k])−Ψ(

K
∑

k=1

γ[k])

)

, (15)

γ[k] = α[k] +
J
∑

j=1

φj[k]. (16)

As before, the approximation is introduced because the integral used to evaluate the likelihood
for an individual,

p
(

x1, · · · , xJ

∣

∣ α, β
)

∫ J
∏

j=1





(

K
∑

k=1

θ[k]β[jk]

)xj
(

1−
K
∑

k=1

θ[k]β[jk]

)1−xj


Dα(dθ), (17)
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does not have a closed form solution. As in the model for text and references, we then posit N
independent fully factorized joint distributions over the latent variables, one for each individual,

q
(

θ, z1:J

∣

∣ γ, φ1:J

)

= q (θ|γ)

J
∏

j=1

q
(

zj

∣

∣ φj

)

which depend on a set of free parameters, (γ, φ1:J ). We then develop a mean-field approximation
to the true posterior of the latent variables given data and hyper-parameters, which leads to the
approximate EM described above.

B—The MCMC for the “fully Bayesian” model. We derived a Metropolis-within-Gibbs
MCMC sampler for these model specifications, following [15]. One iteration for this algorithm
consists of a Gibbs sampler for drawing z, θ and β and two Metropolis-Hasting steps for drawing
α0 and ξ. The joint distribution for the fully Bayesian version of the GoM model is:

p(x, z, θ, β, α0, ξ) = p(ξ)p(α0)p(β)

N
∏

n=1



p(θn|α)

J
∏

j=1

K
∏

k=1

θnzjnβ
xjn

[jzjn](1− β[jzjn])
1−xjn



 (18)

where p(β) =
∏J

j=1

∏K
k=1 p(β[jk]). The exact specifications for p(β[jk]), p(ξ) and p(α0) are given

by in Section 6.1.1. From the factorization of the joint distribution in Equation (18), we are
able to derive the full conditional distributions of β, z and θ.

The Gibbs sampler algorithm can then be used to obtain the posterior distribution of the
model parameters β and θ. To obtain the parameters update for the (i + 1)-th step, we do the
following.

• For n = 1, . . . , N , for j = 1, . . . , J , sample

z
(i+1)
jn ∼Multinomial (q, 1),

where q(q1, . . . , qK) and qk = θ
(i)
n[k](β

(i)
[jk])

xjn(1− β
(i)
[jk])

1−xjn .

• For j = 1, . . . ,K, for k = 1, . . . ,K, sample

β
(i+1)
[jk] ∼ Beta






1 +

∑

{n:z
(i+1)
jn =k}

xjn, 1 +
∑

{n:z
(i+1)
jn =k}

(1− xjn)






.

• For n = 1, . . . , N , sample

θ(i+1)
n ∼ Dirichlet



α[1] +
J
∑

j=1

δ(z
(i+1)
jn = 1), . . . , α[K] +

J
∑

j=1

δ(z
(i+1)
jn = K)



 .

We use Metropolis-Hasting steps to draw from the posterior distribution of α0 and ξ, given
that α = α0ξ is random. For α0, we consider the proposal distribution p(α∗

0|α0) = Gamma (γ, γ/α0)
where γ is an adjustable tuning parameter. The Metropolis-Hasting step for α0 is:
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• Sample α∗
0 ∼ p(α∗

0|α
(i)
0 ).

• Compute the proposal ratio

r(α0) =
q(α∗

0|.)p(α
(i)
0 |α∗

0)

q(α
(i)
0 |.)p(α∗

0|α
(i)
0 )

.

• Let

α
(i+1)
0 =

{

α∗
0 with probability min(1, r(α0))

α
(i)
0 with probability 1−min(1, r(α0)).

Here, q(α0|.) is the full conditional distribution of α0, conditioning on all of the other variables.
From (18), it follows that

q(α0|.) ∝ p(α0)

(

Γ(α0)

Γ(ξ[1]α0) . . . Γ(ξ[K]α0)

)N N
∏

n=1

K
∏

k=1

(θn[k])
α0ξ[k]. (19)

Next, for ξ, we consider the proposal distribution p(ξ∗|ξ) = Dirichlet (δKξ1, . . . , δKξK) where
δ is a tuning parameter which can be adjusted. The Metropolis-Hasting step for ξ is described
below:

• Sample ξ∗ ∼ p(ξ∗|ξ(i)).

• Compute the proposal ratio

r(ξ) =
q(ξ∗|.)p(ξ(i)|ξ∗)
q(ξ(i)|.)p(ξ∗|ξ(i))

• Let

ξ(i+1) =

{

ξ∗ with probability min(1, r(ξ))

ξ(i) with probability 1−min(1, r(ξ)).

Here, q(ξ|.) is the full conditional distribution of ξ, conditioning on all of the other variables.
From (18), we have

q(ξ|.) ∝ p(ξ)

(

Γ(α0)

Γ(ξ[1]α0) . . . Γ(ξ[K]α0)

)N N
∏

n=1

K
∏

k=1

(θn[k])
α0ξ[k]. (20)

6.2.2 Infinite Mixture: Inference

In the infinite mixture case, where we assume the total number of disability profiles to be infinite
with an unknown number, K of observed profiles in this data, the posterior distribution of c
does not have a closed form solution. However, the full conditional distributions of the cn

for n = 1, . . . , N are known up to a normalizing constant. Using the algorithm in Figure 4, we
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substitute the following full conditional probabilities into step 7. The full conditional probability
that senior xn belongs in an existing (without xn) profile k is

p
(

c[n] = k
∣

∣ c[−n], x
)

∝

m(−n, k)
∏J

j=1 Γ



τ +
∑

{i:i6=n,ci=k}

xji + xjn



Γ



τ +
∑

{i:i6=n,ci=k}

(1− xji) + 1− xjn





(N − 1 + α)(2τ + m(−n, k))J (Γ(τ)Γ(τ + 1))J
,

where c[−i] is the profile assignment vector for all seniors other than xi. The full conditional
probability that senior xi belongs to a profile which no other xi′ belongs to is the following:

p
(

c[n] 6= c[i] ∀ i 6= n
∣

∣ c[−n], x
)

∝ α

2J (N − 1 + α)
.

The parameters of the model estimated in this way are the vector c of profile assignments and
the total number of profiles, K. The posterior distributions of c and K can be found using
a Gibbs sampler with these full conditional distribution. In order to asses convergence of the
Markov chain, we examine the total number of profiles (which varies by Gibbs sample) and
consider the Markov chain converged when the number of profiles has converged.

We diagnosed the algorithm to have converged when several independent chains sampled
close values of K. We started chains with 10, 25, 40, and 21,574 profiles and they converged
after approximately 25 iterations. We can be reasonably confident of convergence despite the
small number of iterations because of the diversity of chain starting values.

Again, the posterior distributions of c and K depend on the values of α (the Dirichlet process
parameter) and τ (the parameter of the symmetric Beta priors on the βjk. Using α = 1 is a
standard value which assumes prior indifference toward groups of one member. Values of τ less
than one represent a prior belief that ADL/IADL disability probabilities will tend to be close to
0 or 1 for each profile. Values of τ greater than one represent a prior belief that many disability
probabilities will be close to 0.5. We choose a value of τ = 10 to represent a belief that there
should be profiles with intermediate probabilities.

6.3 Empirical Results

We fit three models for disability propensity profiles: the finite mixture with random Dirichlet
parameter α, the finite mixture with fixed but unknown α, and the infinite mixture model.

We carry out the analysis of the NLTCS data using both MCMC and variational methods,
and fitting the data with K-profiles GoM models, for K = 2, 3, · · · , 10. To choose the number of
latent profiles that best describes the data, we use a method that focuses on the most frequent
response patterns. In the NLTCS data, what we mean by most frequent response patterns
are the response patterns with observed counts greater than 100. For example, the “all-zero”
response pattern (which concerns individuals with no disabilities on the 16 ADLs/IADLs) has
the largest observed count of 3, 853. They are actually 24 response patterns with observed counts
greater than 100 and they account for 41% of the total number of observations (which is here
21, 574). Then, using the estimates of the model parameters obtained via an MCMC algorithm
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Table 3: Observed and expected cell counts for frequent response patterns under GoM models
with K = 2, 3, · · · , 10. The model with K = 9 replicate marginal pattern abundance best.

n response pattern observed K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3853 1249 2569 2055 2801 2889 3093 2941 3269 3016
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 216 212 225 172 177 186 180 180 202 205
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1107 1176 1135 710 912 993 914 937 1010 944
4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 188 205 116 76 113 200 199 181 190 198
5 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 122 259 64 88 58 199 90 89 116 127
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 351 562 344 245 250 274 274 259 331 303
7 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 206 69 20 23 116 86 80 137 116 111
8 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 303 535 200 126 324 255 236 213 273 264
9 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 182 70 44 71 170 169 162 200 172 187
10 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 108 99 51 39 162 105 85 117 97 108
11 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 106 16 32 94 94 123 125 133 142 157
12 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 195 386 219 101 160 46 25 24 25 31
13 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 198 369 127 111 108 341 170 169 189 200
14 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 196 86 41 172 90 104 224 214 174 187
15 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 123 174 96 86 132 131 120 109 95 108
16 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 176 44 136 162 97 67 167 149 152 167
17 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 120 9 144 104 41 57 47 96 75 72
18 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 101 12 127 90 54 41 68 72 70 74
19 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 102 57 44 38 22 18 18 85 103 85
20 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 107 35 88 104 96 84 87 43 37 31
21 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 104 122 269 239 202 52 50 50 63 53
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 164 55 214 246 272 274 276 224 166 143
23 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 153 80 291 261 266 250 230 235 189 167
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 660 36 233 270 362 419 418 582 612 474

Table 4: Sum of Pearson residuals for GoM models with K = 2, 3, · · · , 10.

No. of latent profiles, K 2 3 4 5 6 7 8 9 10
Sum of squares×105 75 20 37 13 11 7.7 9.4 4.4 8.2

Sum of absolute residuals 20684 4889 5032 1840 2202 2458 1908 1582 1602

or a variational EM algorithm, we can compute the expected cell counts for the 24 response
patterns and compare with the observed cell counts. Eventually, to choose the model that best
fits the data, we can compute the sum of absolute values of the “Pearson chi-square” residuals
[10],

Observed Count− Expected Count√
Expected Count

,

for each model .

Table 3 provides the expected cell counts for the 24 most frequent response patterns (to be
compared with the observed cell counts) using MCMC methods (for K = 2, . . . , 10). We could
observe from this results that the model with K=9 has a better fit for the “all-zero” response
pattern, the “all-one” response pattern and the pattern number n = 3 (pattern with only one
1 on the IADL “doing heavy housework”). The computation of the sum of Pearson residuals
confirms that K = 9 seems to be a good choice. This is also true when one computes the
expected cell counts using the variational methods.

To deal with this issue of model choice, we can also compute a version of DIC directly using
the output from MCMC simulations. Indeed, if we focus on parameters θ and β, the computation
is done using draws from the posterior distribution of βjk and θk. Figure 9 shows the plot of
DIC for models with K = 2, 3, · · · , 10 latent profiles. According to the DIC plot, we choose
models with K = 8 or K = 9 latent profiles. Using variational approximation methods, we
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Figure 9: Left Panel: DIC for K = 2, · · · , 10 latent profiles (GoM model). Right Panel: BIC
for K = 2, · · · , 10 latent profiles (GoM model).
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Figure 10: Left Panel: Log-likelihood (5 fold cv) for K = 2, . . . , 10, 15 (GoM model). Right
Panel: Posterior distribution of K.

also computed an approximate version of BIC based on the variational approximation. Figure 9
shows the plot of BIC for models with K = 2, 3, · · · , 10 latent profiles. This criterion suggests a
number of profiles around 8. The cross validation results shown in Figure 10 (using variational
approximation methods) also suggest the choice of 8 or 9 profiles.

The infinite model generates a posterior distribution for the number of profiles, K, given the
data. Figure 10 shows the posterior distribution ranges from 11 to 15 profiles. We expect that
the infinite model will require more profiles because it is a hard clustering.
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Figure 11: Latent profiles for the GoM model with K=9.

According to the array of different criteria we have considered, K = 9 seems to be an
appropriate choice for the NLTCS data. Figure 11 shows the latent profiles obtained for the 9
profiles GoM model using MCMC methods. The conditional response probabilities represented
on the Y-axis are the posterior mean estimates of βjk = P (xnj = 1|θnk = 1), the probability of
being disabled on the activity j for a complete member of latent profile k. The profiles have the
following interpretation:

• We can clearly distinguish two profiles for “healthy” individuals; these are the lower curves
(the solid, blue curve and the dashed, light blue curve).

• The upper curve (solid, red curve) corresponds to seriously “disabled” individuals since
most of the probabilities are greater than 0.8.

• One profile (dotted, brown curve) has the second highest values for the IADLs “managing
money,” “taking medicine” and “telephoning.” This focuses on individuals with some
cognitive impairment.

• The profile with the second highest probabilities for most of the ADLs/IADLs (dotted,
orange curve) characterizes “semi-disabled” individuals.

• The profile with very high probabilities for all the activities involving mobility including the
IADL “outside mobility” (solid, green curve) characterizes mobility-impaired individuals.

• Another profile characterizes individuals who are relatively healthy but can’t do “doing
heavy housework” (dashed, blue curve). Note that in Table 3, the response pattern n = 3
has the second largest observed cell count.
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• The two remaining profiles (the dot-dashed, blue curve and the dashed, light green curve)
corresponds to individuals who are “semi-healthy” since they show limitation s in perform-
ing some physical activities.

We found similar interpretations with the estimates based on variational methods and MCMC
methods despite some differences in the estimated values of the conditional disability propensity
probabilities βjk.

Because the NLTCS data is characterized by a large amount of healthy individuals with “all
zero” response patterns (there are 3, 853 all zero response patterns and they represent a little
less than 18% of the sample population), we would like to take into account this excess of healthy
individuals. In a forthcoming paper focusing on the results of analyses with the GoM model, we
plan carry out an extended analysis using a modified version of the GoM model which adjusts
for this excess.

7 Concluding Remarks

In this paper, we have studied the issue of model choice in the context of mixed-membership
models. Often the number of latent classes or groups is of direct interest in applications, but it
is always an important element in determining the fit and meaning of the model.

We have used “latent Dirichlet allocation” which has some breadth of currency in the data
mining literature, and shown how extensions to it to analyze a corpus of PNAS biological sciences
publications from 1997 to 2001. Among the approaches to select the number of latent topics
which we study are k-fold cross-validation and the use of a Dirichlet process prior. Our results
focus on six combinations of models and model choice strategies. They lead us to report on
and interpret results for K = 20 topics, a value that appears to be within the range of possibly
optimal numbers of topics. The resulting topics are also easily interpretable and profile the
most popular research subjects in biological sciences, in terms of the corresponding words and
references usage patterns. Much higher choices for K, lead to faulty and difficult to interpret
conclusions. Incidentally, our 20 topics correlate well with the PNAS editorial categories.

For the analysis of the NLTCS data, we have developed parametric and nonparametric varia-
tions the GoM model. We performed posterior inference using variational methods and MCMC.
We have used different criteria to assess model fit and choose K; in particular a method based
on the sum of Pearson residuals for the most frequent response patterns, and information cri-
teria such as DIC and BIC. We have then reached the conclusion that K = 9 latent profiles is
an appropriate choice for the data set. This choice allows us to identify profiles that did not
appear in the analysis performed in [18]; for instance, the profile for individuals who are pretty
healthy on all the activities but “doing heavy housework.” Further, we were able to interpret all
the 9 profiles, whereas with K = 4 and K = 5, these profiles could not be ordered by severity.
Nonetheless, once we reach K = 5, the fit seems not to improve markedly.
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