
In Proceedings of the 21st International Conference on Software Engineering and Knowledge Engineering (SEKE2009), Boston, USA, July 1-3, 2009.

Using Service-Oriented Architectures
for Socio-Cultural Analysis

David Garlan, Kathleen M. Carley, Bradley Schmerl, Michael Bigrigg, and Orieta Celiku

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh PA 15213 USA
+1 412 268 5056

{garlan, carley, schmerl, bigrigg, orietac}@cs.cmu.edu

ABSTRACT

An emergent domain that raises some unique engineering

challenges is that of software architectures to convert large

bodies of unstructured data to human-usable knowledge,

such as in the domain of socio-cultural information analy-

sis. We report on an architecture based on Service-Oriented

Architectures that we are applying in this domain. We list

the requirements that such an architecture must support,

describe our architecture for addressing them, and outline

what we believe are the important engineering and research

issues that must still be overcome.

1. INTRODUCTION
One of the most striking features of today’s computing

landscape is the exponentially increasing volume of infor-

mation that is becoming electronically accessible. Finding

ways to use this information effectively – to access it in its

myriad forms and formats, to extract insight and know-

ledge, and to update those results as information changes –

is a significant software engineering challenge. While sys-

tems such as search engines provide important capabilities

for accessing and organizing some of this information,

there remains a large gap between the huge corpus of large-

ly-unstructured data and human-usable knowledge.

To address this problem a number of researchers are devel-

oping a new breed of powerful information analysis tools,

called Dynamic Network Analysis, that include capabilities

to do natural language processing on large volumes of data,

techniques for extracting key relations between entities, and

mechanisms for analyzing, filtering, forecasting and visua-

lizing this information as an ecology of evolving networks

including social, knowledge and activity networks [1]

[2][5]. For example, as detailed later, such tools can be

used by scientists to understand change in the Sudan, mili-

tary or intelligence agencies to understand how to interact

with allies, organizational analysts to examine changing

connections among firms and products as evinced by news

stories.

Unfortunately, as implemented today, such tools have a

number of severe limitations.

Stovepiped systems: Current information analysis systems

are often large, monolithic programs that make it difficult

to compose their constituent capabilities with those of other

systems.

Restricted models: Current systems can only work with a

limited set of information models that make interchange

and coordination problematic.

Lack of configurability: Current systems are often tuned

to a specific class of analyses or information abstraction,

and can only be tailored by users having detailed low-level

knowledge of their parameters of operation.

Idiosyncratic interfaces: Each system adopts its own in-

terface conventions, requiring users to learn different inte-

raction conventions for each tool.

Platform restrictions: Current systems often make rigid

assumptions about the specific platform that they can work

on, making it difficult to use them in a distributed setting,

or to balance the need for secure co-location with access to

external capabilities.

Duplicated functionality: Current systems are often engi-

neered to work in stand-alone fashion, requiring each sys-

tem to duplicate functionality also required by others – for

example, in support of graphical interfaces, data manage-

ment, communication, security, etc.

In this paper we describe an approach that addresses these

problems. The key idea is the use of a common integration

architecture, based on service-oriented architectures, that

handles the special requirements for flexible information

analysis. Critical to the success of this approach is the

strong involvement of the community of tool developers

and tool users in identifying standard models and ontolo-

gies to support interoperability, within the service-oriented

context. Focusing specifically on the domain of socio-

cultural analysis, in the remainder of this paper we list

those special requirements, describe our architecture for

addressing them, and outline what are the important engi-

neering and research issues that must still be overcome.

2. SOCIO-CULTURAL ANALYSIS
Socio-cultural analysis involves understanding, analyzing

and predicting the relationships in large complex social

systems. Complex social systems are typically represented

as dynamic networks that relate entities in the system (e.g.,

people, knowledge, actions) to each other. The emergent

field of dynamic network analysis (DNA) is centered on the

collection, analysis, understanding and prediction of dy-

namic relations in and among networks, and the impact of

such dynamics on individual and group behavior. DNA

facilitates reasoning about real groups as complex dynamic

systems that evolve over time. Within this field computa-

tional techniques, such as machine learning and artificial

intelligence, are combined with traditional graph and social

network theory, and empirical research on human behavior,

groups, organizations, and societies to develop and test

tools and theories of relational enabled and constrained

action.

The application of DNA techniques to a large complex so-

cial system, such as the US Army or gang networks, entails

a series of procedures. First, one needs to gather the rela-

tional data. One approach for doing this is to extract rela-

tions from a corpus of texts such as public domain items

like web pages, news articles, journal papers, stock holder

reports, community rosters, and various forms of human

and signals intelligence. Second, the extracted networks

need to be analyzed. That is, given the relational data,

identifying key actors and sub-groups, points of vulnera-

bility, and so on. Third, given a set of vulnerabilities, we

want to ask what would happen to the system were the vul-

nerabilities to be exploited. How might the networks

change with and without strategic intervention?

The center for Computational Analysis of Social and Orga-

nizational Systems (CASOS) at Carnegie Mellon Universi-

ty has been engaged in developing methods and tools to

achieve these activities. The tools are interoperable and can

be organized as a chain to extract networks from texts, ana-

lyze these networks, and then engage in what-if reasoning.

 This tool suite takes into account multi-mode, multi-link,

and multi-time period data including attributes of nodes and

edges. This toolset contains the following tools: AutoMap

[4] for extracting networks from natural language texts,

ORA for analyzing the extracted networks [3], and Con-

struct for what-if reasoning about the networks.

Figure 1 provides an example of the way that these tools

are integrated into a tool chain. Each of the tools (Automap,

ORA, Construct) are monolithic programs. They are loose-

ly integrated through an XML format called DyNetML,

which is an interchange format for rich social network data.

While the existing tools are powerful, their interaction in

terms of a tool chain is coarse-grained because the applica-

tions themselves are monolithic. Thus, expert knowledge is

required to use each tool. The information shared amongst

them in terms of traceability or reproducibility is impove-

rished, meaning that conducting analysis when new infor-

mation becomes available, or on entirely new but related

datasets, is difficult. Additionally, linking tools developed

by other members of the DNA community is challenging.

3. ARCHITECTURAL DRIVERS
To overcome the limitations outlined above, we require a

platform and architecture within which socio-cultural anal-

ysis tools can be integrated, configured, extended and pro-

grammed by end users, and tailored to specific domains

without extensive low-level expertise.

Specifically, data collection, analysis and modeling tools

must reside within an architecture that supports six key

requirements [9].

Heterogeneity in data sources, analytical models, analysis

mechanisms, and end-user needs. As the use of these sys-

tems expands, we can assume increasingly diverse sets of

elements that will need to be integrated into future systems.

Flexible configuration to (a) assemble existing compo-

nents (data sources, data coding tools, analysis tools, visua-

lization tools, and simulation models) in new ways depend-

ing on the type of data available and the kind of analysis

needed, (b) add components to support new capabilities,

and (c) allow users to easily experiment with new analysis

paths, workflows, and simulations without detailed technic-

al knowledge of the tools and underlying technologies.

High performance processing and manipulation of large,

diverse, and distributed sources of data to allow interactive

exploration and analysis.

Traceability of analytic output to sources and intermediate

models and records in order of processing, to allow analysts

to compare results of analysis to ground and derived truth,

and to adjust the fidelity and parameters of their models.

Security and privacy of potentially sensitive information

that is used in the analyses.
Figure 1. The Toolchain for socio-cultural analysis

developed by the CASOS group at Carnegie Mellon.

What-if reasoning by enabling the analyst to change how

data is coded, what data is coded, what virtual experiments

in the simulations are run, track the impact of those deci-

sions, set up multiple choice paths to run in parallel to faci-

litate rapid assessment making use of data-farming tech-

niques, and replay facilities for desired procedures so that

future data sets can be analyzed.

4. RELATED WORK
A number of modern integration frameworks make services

accessible. One of these is Web Services technologies that

provide standards for interaction, including SOAP [8] and

REST [6]. Although standards for Internet-base invocation

are a first step towards service integration web service in-

frastructure does not support ways to define workflows of

services, web service lifecycle issues, or dynamically locat-

ing of services – capabilities necessary for our domain..

Service-oriented architecture (SOA) [10][11] aims to

address some of these issues by defining standards for

workflows (called orchestrations), policies for governance,

and facilities for service discovery. Many definitions and

implementations of SOAs aim to be applicable for general

business domains. While SOAs provide important capabili-

ties for service coordination, by themselves they have limi-

tations that must be overcome to be applicable to our do-

main: (a) orchestration scripts define low level coordina-

tion, and are not appropriate for use by non-technical users;

(b) support for agile and dynamic workflows is often impo-

verished in existing technologies; and (c) existing technol-

ogies have performance-related issues that make them dif-

ficult to use in context (such as ours) where large flows of

data must be efficiently processed.

As an example of these limitations, consider the stan-

dard methods for defining SOA workflows: the Business

Process Execution Language (BPEL) [12] and Business

Process Modeling Notation (BPMN) [15]. BPEL and

BPMN are graphical programming languages that allow

specification of general business processes. BPEL especial-

ly is intended to be interpreted and therefore requires the

detail of a programming language and the skill of a pro-

grammer. To address this, the SOA community has intro-

duced a more abstract notation for defining orchestrations

called BPMN. The goal is that orchestrations defined in

BPMN can be understood by all business users. However,

business analysts are still required to define orchestrations

in BPMN, rather than non-technical users.

Taking these limitations into consideration, it is neces-

sary to augment SOA technology and concepts to particu-

lar domains. For socio-cultural analysis, this is particularly

relevant because it is necessary that services should be ul-

timately assembled by non-technical field analysts who

have expertise in the domain they are trying to analyze, but

little expertise in programming. Thus, one of the challenges

is identifying the abstractions and protocols that should be

built on top of SOAs, but that are tailored to the needs of

the socio-engineering analysis domain. Furthermore, we

require an easy-to-user approach for service assembly.

Among the other technologies that attempt to provide

general-to-use workflow definition in other domains are

Yahoo! Pipes [18] for defining mashups on the Internet and

uDesign for defining activities in pervasive computing en-

vironments [17]. Our work is similar in spirit to these ef-

forts, but specialized for socio-cultural analysts.

There are also several implementations of infrastruc-

tures that provide an extensible framework for socio-

cultural analysis, particularly in the intelligence analysis

domain. For example, COMPOEX [7] provides an integra-

tion architecture for assisting military commanders and

civilian leaders in selecting models and analyses to plan

and execute military campaigns. The goal of our approach

is to develop a framework that is targeted more generally at

socio-cultural analysis (not limited to military and intelli-

gence activities). Furthermore, COMPOEX is focused on

simulation once models have been developed, whereas our

approach also includes the ingestion of raw data to produce

the models.

5. ARCHITECTURE DESCRIPTION
From a functional perspective, information analysis sys-

tems have a common flow of processing: Data is input into

the system originating from many sources. These sources,

including public news reports and intelligence reports, are

typically written in natural languages. These inputs need to

be processed and marked up to identify key concepts that

are needed for intelligence analysis, and output in a form

that is suitable for simulation and analysis. The concepts, or

entities, of interest in the inputs are mostly fixed for the

domain, and include knowledge and agents. The output

from processing is a model represented as a graph with

relationships among agents and knowledge. Models can

then be analyzed and viewed in a variety of ways. Further,

simulation or what-if analysis may be performed to create a

set of related models. Insight gained is then used to refine

the data processing and analysis. Finally, reports of various

kinds can be generated and stored.

Our architecture naturally follows this decomposition of

activities, while building on best practices in the engineer-

ing of service-oriented architectures and new techniques to

support end-user programming and system configuration.

The basis for the architectures is (a) the use of a multi-

layered system capturing the essential flows of information

and processing, and (b) support for flexible orchestration,

coordination, and transformation.

Multi-layered system. The domain of dynamic network

analysis naturally lends itself to a four-tiered system shown

in Figure 2:

1. Data Layer: a set of heterogeneous data sources. These

include databases, wire feeds, intelligence streams, email

corpuses, web sites, historical documents, etc. These form

the raw inputs to the system, and may be relatively stable

(as in the case of historical databases), changeable (as in

the case of web sites), or highly dynamic (as in the case of

wire feeds and intelligence streams).

2. Model Layer: a set of high-level models, which represent

information extracted from the first layer. This layer will be

populated by a variety of models including annotated doc-

uments (e.g., as a result of natural language processing) and

network models (e.g., ORA Meta-Networks 0) representing

relationships between key entities in the domain of dis-

course. Bridging these two layers is a set of model extrac-

tors (e.g., Automap [4], CEMap) that effect the transforma-

tion of raw data into theoretically richer forms for analysis.

3. Analysis Layer: populated by a collection of analysis

tools (including ORA, UCINET, Pythia). Such tools will

reside as semi-independent components, interacting with

models in the second layer and generating input for and

analyzing results from tools in the fourth layer through a

standard set of protocols. This layer also includes simula-

tions, such as Construct, for forecasting and exploring al-

ternative histories and futures. Simulation and analysis

tools will have well-defined interfaces, and be integrated

into a service-oriented framework that enables registry and

lookup in support of dynamic configuration and incremen-

tal reconfiguration.

4. User Layer: the end-user layer, which provides an inter-

face for users to interactively view the analysis results, con-

figure new analyses, trace analysis to sources, and generate

reports. Capabilities in this layer fall into two categories.

One is output of analyses and simulations from the lower

layer (such as ORA reports); this also allows the user to

fine-tune the parameters of these (e.g., specifying whether

reports will be generated for the entire network or key enti-

ties). The other supports orchestration, allowing users to

put together new combinations of processing that determine

both the nature of model generation and

the way in which analysis/simulation

services are assembled.

Orchestration, Coordination, and

Transformation. To enable dynamic

integration and configuration of the com-

ponents into the four layers requires a

number of mechanisms for orchestration,

coordination and transformation.

First is the ability to automatically pro-

duce full analysis pipelines from end-user

descriptions that specify at a high level of

abstraction what kinds of processing is

needed to produce a particular kind of

analysis. Using a combination of graphi-

cal and textual inputs, users will be able

to specify and configure a collection of

data transformation and analyses services

to support their needs. The system auto-

matically assembles these parts, provid-

ing the “glue” for connecting the parts.

Second is the ability to select the appropriate transcoders to

bridge data-mismatch assumptions between components.

Building on earlier research in document transformation,

the platform will include a registry of transcoders and fil-

ters, together with algorithms that find an optimal chain of

transformations (based on information fidelity metrics)

[13][14]. While manual fine-tuning of these transforma-

tions may be necessary in some cases, we expect that the

majority can be done automatically.

Third is the use of a standards-based service-oriented archi-

tecture for the analysis tools. Specifically, the architecture

contains a registry of the services provided by the suite of

existing and newly-developed tools. As users compose da-

taflow paths for analysis, services are automatically se-

lected and composed in appropriate ways (in some cases

requiring the automatic interposition of data transformers).

Assessment/

Reporting/

Recording

User Orchestration,

Collation, and

Feedback

Figure 2. High Level View of SORACS Architecture.

Data

Sources

Transcoders/

Annotators

Annotated

Data

and Models

Analysis/

Simulation

Data Flow
Model Interaction

Control
User Input

Layer 1: Data Layer 2: Models Layer 3: Analysis Layer 4: User

Data

Reduction

Model Updates Data

Requirements

Foundational Services

Data Management

Provisioning and Distribution

Service Invocation

Intelligence Services

Natural Language Processing

Data analysis

Simulation

Configuration Services

Visualization

Orchestration

Reporting

Assessment

Playback

Figure 3. Layered Service Oriented Architecture.

E
n

te
rp

ri
se

 S
er

v
ic

e
B

u
s

T
ra

n
sc

o
d

er
s

S
ec

u
ri

ty

In addition the integration framework will provide a set of

common services for communication, security, provenance,

and mismatch avoidance.

The organization of these services follows a fairly standard

approach used by modern SOAs. As illustrated in Figure 3,

we organize the services into three groups. At the bottom

are foundational services, including data management, pro-

visioning and distribution, and service invocation. Next are

services that provide the meat of the processing. This is

where tools specific to the data transformation, analysis,

and simulation for understanding and interpreting informa-

tion. At the top are configuration service, which support the

specification and tailoring of computations, as well as cer-

tain visualization services for presenting information to a

user. Communication and coordination is handled by an

Enterprise Service Bus, which supports service discovery,

look-up, enlistment, and interaction.

6. IMPLEMENTATION
The tools described in Section 2 encompass a wide range of

activities required by socio-cultural analysts. They are

therefore good candidates for the initial investigation of an

architecture in this domain. In this section we outline our

current implementation of an initial version of the above

architecture using the existing tools developed by CASOS.

The initial step in our investigation is identifying and im-

plementing the individual services that can be derived from

these tools from which orchestrations can be derived.

Automap analyses textual data. It can process data lexically

(e.g., by removing extraneous white space, splitting sen-

tences) and grammatically (e.g., by identifying and extract-

ing parts of speech, resolving pronouns). Services derived

from Automap can be considered lexical services and

grammatical services or simply a combined textual service.

Service-able functionality also exists within ORA. ORA

contains many different common network science metrics

and grouping algorithms (e.g., CONCOR, Newman, FOG,

Johnson Hierarchical, Attribute based). It also has facilities

for generating, editing, visualizing, and detecting changes

in networks. Construct includes services such as experi-

mental design construction, report generation and simula-

tion. In all cases, the services can be provided at a fine or

coarse grain level in which analysis operations are provided

as a graph analysis service.

Once the services were identified, we entered a rearchitect-

ing phase that involved making the services more de-

coupled in the tools. For Automap, this involved making

available each of the lexical analysis components as inde-

pendent components decoupled from the existing user in-

terface; for ORA it involved decoupling the analyses and

reports desired from the user interface. This process is on-

going, and we present a discussion of the challenges in the

following section.

Once the functions that could be used as services were

identified and isolated in the code, we then implemented

them as services using the standard approach to web ser-

vice definition (WSDLs) and using an open source applica-

tion server to make these available as web services. For this

phase, we used Apache Tomcat as our application server,

and Apache CXF to streamline our implementation of the

existing Java implementations as web services.

Our initial version of the orchestration interface for this

domain has been written as a plug-in to AcmeStudio (see

Figure 4) [16]. We have defined an architectural style for

this domain, detailing each of the services as particular

component types, and defining connector types that are

specific to this domain allowing the components to be

chained together. The orchestration backend of the plug-in

takes architectural specifications and produces BPEL defi-

nitions that can be uploaded and executed by a BPEL en-

gine. We currently use Apache ODE as our orchestration

engine for executing these orchestrations.

7. DISCUSSION & CONCLUSION
In this paper, we have discussed the requirements and de-

sign for an architecture for socio-cultural analysis. We have

also described an initial implementation that provides a

domain-specific approach to defining workflows that is

built upon existing SOA standard technologies. In doing

this, we encountered a number of additional issues and

technological challenges that are imposed by this domain.

What are the appropriate connectors for long-lived service

invocations? While the intent in SOAs is for service or-

chestrations to execute over long periods of time (e.g.,

many years), support for invocation of long running indi-

vidual services is low. BPEL provides a way to deal with

long running services through asynchronous invocation; the

BPEL program then polls for results. The domain of socio-

cultural analysis must support long running services be-

cause the amount of data being analyzed is typically large,

and the analyses complex. However, the simplest model for

analysts is to define call-return type connections between

services. There needs to be a balance between conceptual

ease for analysts and technical detail for developers.
Figure 4. The AcmeStudio orchestration interface.

Related to this is the issue of control vs. usability. How do

we define services that have the appropriate interfaces for

use in the common case, but still provide enough control

for detail-oriented analysts? For many analyses in this do-

main, there are a set of common or default parameters that

are sufficient in most cases, but we still wish to provide

control for the less common cases.

Traceability and reproducibility is another challenge that

we need to address. SOA platforms provide some coarse-

grained traceability through provenance mechanisms.

However, we require finer grained traceability so that ana-

lysts can query how analysis conclusions were made, and

the reliability of the data that they were based on. Further-

more, we require the ability to rerun orchestrations with

minor changes in data. Currently, there is no mechanism

for providing incremental analysis or data-caching to re-

duce the time these analyses take.

These challenges are areas of future work. Moreover, we

are planning to extend the current prototype in a number of

directions, including: a) providing automated transcoding

between data formats, and b) allowing the definition and

reuse of workflow templates.

Another area of future work evaluating the effectiveness of

the architecture for the socio-cultural domain. The architec-

ture described in this paper matches the way that analysts

think about the problem; we believe that the technical as-

pects balance the needs of users and developers of tools.

We have some confidence that the architecture is correct

through integration of existing CASOS tools. Future work

will involve integrating additional components, and devel-

oping a more functional user interface for analysts to use.

ACKNOWLEDGEMENTS
This work is supported in part by the Office of Naval Research

(ONR), United States Navy, N000140811223 as part of the HSCB

project under OSD. Additional support for the core CASOS tools

was provided by National Science Foundation (NSF) Integrative

Graduate Education and Research Traineeship (IGERT) program,

NSF 045 2598, the Air Force Office of Scientific Research,

FA9550-05-1-0388 under a MURI on Computational Modeling of

Cultural Dimensions in Adversary Organizations, the Army Re-

search Institute W91WAW07C0063, the Army Research Lab

DAAD19-01-2-0009, the office of Naval Research (ONR),

N00014-06-1-0104 the Army Research Office W911NF-07-1-

0060, and CASOS - the center for Computational Analysis of

Social and Organizational Systems at Carnegie Mellon University

(http://www.casos.cs.cmu.edu). The views and conclusions con-

tained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or

implied, of the Office of Naval Research, the Office of the Secre-

tary of Defense, the Army Research Lab, the Air Force Office of

Sponsored Research, the Army Research Office, the National

Science Foundation or the U.S. government.

REFERENCES

[1] Carley, K.M., Dynamic Network Analysis” Dynamic Social

Network Modeling and Analysis: Workshop Summary and Pa-

pers. Breiger, R., Carley, K., Pattison, P. (eds). Committee on

Human Factors, National Research Council, 2003.

[2] Carley, K.M., A Dynamic Network Approach to the Assess-

ment of Terrorist Groups and The Impact of Alternative Courses

of Action. In Visualizing Network Information Meeting Proceed-

ings RTO-MP-IST-063, Neuilly-sur-Seine, France, 2006.

[3] Carley, K.M., Columbus, D., DeReno, M., Reminga, J., and

Moon, I.-C. ORA User’s Guide 2007. Carnegie Mellon University

School of Computer Science Institute for Software Research

Technical Report CMU-ISR-07-115, 2007.

[4] Carley, K.M., Columbus, D., DeReno, Diesner, J., and Sebu-

la, N. AutoMap User’s Guide 2007. Carnegie Mellon University

School of Computer Science Institute for Software Research

Technical Report CMU-ISR-07-114, 2007.

[5] Carley, K.M., Diesner, J., Reminga, J., and Tsvetovat, M,

Toward an Interoperable Dynamic Network Analysis Toolkit,

DSS Special Issue on Cyberinfrastructure for Homeland Security:

Advances in Information Sharing, Data Mining, and Collaboration

Systems, 43(4), p. 1324 – 1347, 2007.

[6] Fielding, R. Architectural Styles and the Design of Network-

based Software Architectures. Ph.D. Thesis, University of Cali-

fornia, Irvine, 2000.

[7] Kott, A. and Corpac, P.S. COMPOEX Technology to Assist

Leaders in Planning and Executing Campaigns in Complex Op-

erational Environments. In 12th International Command and Con-

trol Research and Technology Symposium,, 2007.

[8] Mitra, N., and Lafon, Y. (eds) SOAP Version 1.2 Specifica-

tion (Second Edition). http://www.w3.org/TR.2007/REC-soap12-

part0-20070427, 2007.

[9] Naval Research Laboratory (NRL) Diplomatic, Information-

al, Military, Economic (DIME) Political, Military, Economic,

Social, Information, Infrastructure (PMESII) Modeling Require-

ments Workshop. John Hopkins University, Maryland, 2007.

[10] Newcomer, E., Lomov G. Understanding SOA with Web

Services. Addison Wesley, 2005.

[11] OASIS. OASIS Reference Model for Service Oriented Ar-

chitecture 1.0. http://www.sei.cmu.edu/pub/documents/

05.reports/pdf/05tn014.pdf. 2006.

[12] OASIS. Web Services Business Process Execution Language

Version 2.0, April 2007. URL http://docs.oasis-

open.org/wsbpel/2.0/wsbpelv2.0.html.
[13] Ockerbloom, J. Exploiting Structured Data in Wide‐Area

Information Systems, Ph.D. Thesis. Carnegie Mellon University

Technical Report CMU‐CS‐95‐184, August, 1995
[14] Ockerbloom, J. Accommodation: The Key to Making Widely

Adopted Composable Systems. In Proc. Workshop on Composi-

tional Software Architectures, Monterey, CA, 1998.
[15] Object Management Group. The Business Process Modeling

Notation (BPMN) Version 1.2. January, 2009. URL:

http://www.omg.org/docs/formal/09-01-03.pdf.

[16] Schmerl, B., and Garlan, D. AcmeStudio: Supporting Style-

Centered Architecture Development (Research Demonstration) In

Proc. the 26th ICSE, Edinburgh, Scotland, May 2004.

[17] Sousa, J.P., Schmerl, B., Poladian, V. and Brodsky, A. uDe-

sign: End-User Design Applied to Monitoring and Control Appli-

cations for Smart Spaces. In Proceedings of the 2008 Working

IFIP/IEEE Conference on Software Architecture, Vancouver, BC,

Canada, 18-22 February 2008

[18] Yahoo!, Inc. Yahoo Pipes. http://pipes.yahoo.com/pipes.

Accessed March, 2009.

http://www.casos.cs.cmu.edu/

